首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A group of DNA-binding proteins from the soluble extract of newborn rat epidermis have been separated by chromatography using DNA-cellulose columns. The electrophoretogram of the DNA-binding proteins eluted from a single stranded DNA-cellulose column shows five major proteins of molecular weights ranging between 25K to 40K. Both the epidermal protein filaggrin and most keratins, except two high molecular weight keratins, do not show in vitro DNA-binding activity.  相似文献   

2.
The cytoplasmic DNA-binding proteins of Physarum polycephalum were recovered by chromatography of cytosol extracts on sequential columns of native and denatured calf thymus DNA-cellulose. 5.4% of the total cytosol protein was bound to native DNA-cellulose, while 4.4% was bound to denatured DNA-cellulose. Stepwise salt gradient elution of the columns separated the DNA-binding proteins into 9 fractions which were analysed by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Several hundred discrete polypeptide bands were identified, with many more high molecular weight polypeptides (greater than 100 000 D) binding to native than to denatured DNA. Continuous in vivo labelling of microplasmodia in KH2[32P]O4 and [3H]leucine was used to determine which of the DNA-binding proteins were phosphorylated, and to approximate their phosphorus content. About 30–40 phosphoproteins were resolved among the DNA-binding proteins. Most phosphoproteins contained less than 3 phosphates per polypeptide, but a small number of low molecular weight phosphoproteins (less than 50 000 D) contained from 5 to 10 phosphates per polypeptide. The majority of high molecular weight DNA-binding phosphoproteins bound to native DNA and were eluted with 0.25 M NaCl. As a group, the DNA-binding proteins were enriched in protein-bound phosphorus when compared with the cytosol proteins which did not bind to DNA. The phosphorus content of the cytoplasmic DNA-binding proteins was similar to that of the acidic nuclear proteins.  相似文献   

3.
Affinity chromatography on single-stranded and double-stranded DNA-cellulose indicates that 12 proteins previously identified from herpes simplex virus type 2-infected cells, ranging in molecular weight from 28 X 10(3) to 186 X 10(3), bind to DNA-cellulose. The DNA-binding proteins found in infected cells differed in relative binding strengths for denatured DNA-cellulose. The virus specificity of these DNA-binding proteins was further studied by comparison with DNA-binding proteins isolated from mock-infected cells, and by immunoprecipitation of infected-cell DNA-binding proteins with antisera specific for viral antigens. The promise this technique holds for the purification and study of polypeptides involved in virus DNA replication, recombination, or repair is discussed.  相似文献   

4.
Up to seven early poxvirus-specific proteins have been isolated from vaccinia-WR-infected and cowpox-virus-infected chick embryo fibroblasts by affinity chromatography on native DNA-cellulose columns. The proteins have been characterized by one-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis and by nonequilibrium pH-gradient electrophoresis. The molecular weights of the viral proteins were determined by comparison with proteins of known molecular weight and are comparable to several of the vaccinia-WR-specific DNA-binding proteins isolated previously from infected L-929 cells by Solosky J. M., Esteban M. and Holowczak J.A. [J. Virol. 25, 263-273 (1978)]. The viral proteins binding reversibly to native DNA have been classified as immediate early viral gene products. Synthesis of cowpox-virus-induced early DNA-binding proteins is inhibited in chick cells pretreated with homologous interferon at a concentration of 500--1000 units/ml.  相似文献   

5.
The DNA-binding properties of the receptor for 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) were investigated using chromatography on DNA-cellulose columns. A maximal binding of about 40% of the total receptor complex to DNA-cellulose was observed. In order to interact with DNA, the receptor must first bind TCDD. A heat-activation step followed by gel permeation chromatography using Sephadex G-25 increased the binding of the cytosolic receptor to DNA. The DNA-binding ability of the receptor was almost lost following mild proteolysis using trypsin or alpha-chymotrypsin, although these treatments did not reduce its ligand binding capacity and had no apparent effect on its size. Furthermore, pre-treatment of the DNA-cellulose column with an intercalating drug, ethidium bromide, resulted in inhibition of the binding of the TCDD-receptor complex to DNA, indicating that not only electrostatic interactions but also the configuration of DNA are of importance in receptor-DNA interactions.  相似文献   

6.
With heat treatment (20 degrees C for 30 min), the glucocorticoid-receptor complex becomes 'activated' and undergoes an increase in affinity for DNA. A two-stage procedure was used to separate sequentially the rat liver glucocorticoid-receptor complex from proteins with high and low affinity for DNA. DNA-cellulose column chromatography of unheated cytosol resulted in the retention of DNA-binding proteins, but not the unactivated receptor complex. Heat treatment of the column eluate resulted in increased affinity of the receptor complex to DNA, and chromatography on DNA-cellulose then yielded receptor complex free from proteins with low affinity for DNA. Removal of DNA-binding proteins during the first chromatographic step was critically dependent on ionic conditions and the ratio of cytosol chromatographed to DNA-cellulose. A purification of 11000-fold (85% yield) was achieved by this procedure. The partially purified receptor complex was taken up by rat liver nuclei.  相似文献   

7.
The retinoblastoma (RB) gene encodes a nuclear phosphoprotein with a molecular weight of 110,000 (pp110RB) associated with DNA-binding activity. This sequence-nonspecific DNA binding activity was further studied by Southwestern and DNA-cellulose chromatography using purified fusion proteins expressed in Escherichia coli. Three fusion proteins, containing amino acids 612-775, 776-928, and 612-928 of pp110RB, bound to DNA; the binding affinity of the latter was approximately 20-fold higher than those of either smaller region. Other regions of pp110RB had no detectable binding activity, indicating that the carboxyl-terminal region of the RB protein is the major domain responsible for interacting with DNA. Since several potential phosphorylation sites reside within this region, isoforms of RB protein from cellular lysates with various degrees of phosphorylation were compared with respect to their DNA-binding affinity. The hyperphosphorylated form was eluted from DNA-cellulose columns at 0.1-0.3 M NaCl, whereas the hypophosphorylated form appeared in the eluates only at salt concentrations of 0.4-0.7 M, implying that phosphorylation of RB protein may affect its DNA-binding activity. That pp110RB can bind DNA intrinsically, and that this activity can be modulated by phosphorylation, is consistent with the proposed regulatory role of the RB protein in cell growth and differentiation.  相似文献   

8.
The interaction of SV40 T-antigen and viral DNA was studied by using adsorption of DNA-protein complexes on nitrocellulose filters. The T-antigen purification procedure included ion-exchange chromatography on DEAE-cellulose, selective adsorption of cellular proteins on single-stranded DNA-cellulose, chromatography on heparin-Sepharose and removal of cell proteins by an immunosorbent. Only the latter step allowed to remove the contamination of cellular DNA-binding proteins, judging from the reaction of T-antigen neutralization by specific antibodies. It was shown that T-antigen and cellular DNA-binding proteins interact with SV40 DNA at different values of pH, namely ah 6,0-6,4 and 7,9, respectively. The T-antigen obtained was passed through a column with native DNA-cellulose at pH and ionic strength values optimal for interaction with DNA. The bulk of T-antigen (30-40%) did not bind to native thymus DNA and did not interact with SV40 DNA. It is assumed that this fraction is a form of T-antigen, which undergoes structural or functional changes during specific interaction with viral or cellular DNAs.  相似文献   

9.
Analysis of the protein synthesized by Escherichia coli minicells containing R factors demonstrated a variety of low- and high-molecular-weight polypeptides in sodium dodecyl sulfate (SDS)-polyacrylamide gels. Only half of this protein was released into a soluble fraction on lysis of these minicells. The other half remained associated with the minicell envelope. The efficiency of precursor incorporation into protein and the kinds of proteins synthesized changed with the age of the minicells at the time of harvest. About 1 to 2% of the soluble R factor-coded protein bound to calf thymus, E. coli, or R factor DNA-cellulose. Although most of these proteins were excluded from Sephadex G-100 columns, they migrated chiefly as low-molecular-weight-polypeptides (13,000 to 15,000) in SDS-polyacrylamide gels. Additional DNA-binding proteins that appeared to be higher-molecular-weight peptides were noted in extracts from younger minicells. At least one protein, identified as an SDS band, appeared to bind selectively to R factor DNA-cellulose. Minicells with R factors also contained DNA-binding proteins of cell origin, including the core RNA polymerase. No such binding proteins were found in R(-) minicells. These studies suggest that: (i) R factors code for proteins that may be involved in their own DNA metabolism; (ii) R factor DNA-binding proteins may be associated with larger host cell DNA-binding proteins or subunits of larger R factor proteins; and (iii) the age of the minicell influences the extent of protein synthesis and the kinds of proteins synthesized by R factors in minicells.  相似文献   

10.
DNA-binding proteins present in varicella-zoster virus-infected cells were identified by DNA-cellulose chromatography of radioactively labeled cell extracts. Seven virus-specific proteins, ranging in molecular weight from approximately 175,000 to 21,000, showed affinity for single- or double-stranded DNA or both. These proteins include the varicella-zoster virus major capsid protein, a phosphorylated tegument protein, and a 125,000-molecular-weight species which may be analogous to the major DNA-binding protein of herpes simplex virus. We also identified a number of DNA-binding phosphoproteins by these procedures. Finally, protein blot studies were carried out to determine whether these proteins bind preferentially to virus rather than to host cell DNA.  相似文献   

11.
The quality proteolysis changing of DNA-binding proteins of cytosol mice liver was studied by affinity chromatography on DNA-cellulose. It is shown that neutral proteolysis leads to the second peak of DNA binding.  相似文献   

12.
The distribution between nuclei and cytoplasm of DNA-binding proteins from growing NIL cells was studied. To obtain the subcellular fractions, cell monolayers or cells previously detached from the culture dish were treated with the non-ionic detergent Nonidet P-40. Proteins with affinity for DNA were isolated from nuclear or cytoplasmic fractions by chromatography on DNA-cellulose columns and were further analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The results show that P8, one of the major components in the 0.15 M NaCl-eluted proteins, is found predominantly in the cytoplasmic fractions, whereas P6, the other main protein peak in this eluate, is more prominent in the nuclear fraction. Among the other proteins eluted at 0.15 M NaCl from the DNA-cellulose column, P5 and P5′ are detected in both nuclear and cytoplasmic fractions. All the other proteins in the 0.15 M NaCl eluate are present almost exclusively in the cytoplasmic fraction. On the other hand, most of the proteins with higher affinity for DNA, eluted from the column at 2 M NaCl, are present in the nuclear fraction, although they are also detected in the cytoplasm in amounts similar to those observed in the nuclei.  相似文献   

13.
Three isolated nonhistone proteins (HMG-1, HMG-2 and HMG-E) have been purified from chicken erythrocyte chromatin without exposure to overt denaturing conditions, and subjected to limited proteolysis. When treated with trypsin, the three proteins exhibited similar patterns of degradation, as judged by SDS and acid/urea gel electrophoresis. In particular, the first product, P1 (a relatively stable intermediate in each digestion), was a protein analogous to HMG-3, a principal degradation product in preparations of calf thymus high-mobility-group proteins. At least in the case of HMG-E, the products formed by tryptic attack on P1 are the two individual DNA binding domains of HMG-E. P1 derived from HMG-E and one of the individual DNA binding domains of HMG-E were purified by chromatography on columns containing DNA-cellulose or phosphocellulose. The properties of these two portions of HMG-E are consistent with our recently postulated three-domain structure for HMG-1 and its homologs (Reeck, G.R., Isackson, P.J. and Teller, D.C. (1982) Nature 300, 76-78). Thus, P1 consists of two DNA-binding domains of approximately equal molecular weight covalently linked together. From chromatography on DNA-cellulose columns, it is clear that P1 binds to DNA more tightly than does HMG-E. The highly acidic C-terminal domain of HMG-E (which is removed by trypsin in generating P1) thus counteracts the DNA binding of the two other domains of HMG-E (at least in the protein's interaction with purified DNA).  相似文献   

14.
From the bulk of the Xenopus laevis mitochondrial proteins insoluble in 1% Triton X-100 + 1M NaCl, we have isolated, by DNA-cellulose chromatography, a protein fraction enriched in DNA-binding proteins. This fraction contains proteins showing a specific affinity for supercoiled DNA molecules containing the mitochondrial DNA displacement-loop region, as measured by filter binding and competition assays.  相似文献   

15.
DNA-cellulose chromatography and two-dimensional gel electrophoresis have been used to demonstrate the DNA-binding capacity of bacteriophage T4 gpunf/alc. The unf/alc protein does not bind to DNA via an association with RNA polymerase; gpunf/alc was shown to bind to DNA after separation from RNA polymerase and other large proteins by Sephadex chromatography.  相似文献   

16.
C3DP, a malignancy-associated DNA-binding protein from human serum[1], was purified to homogeneity without loss of its DNA-binding affinity. For this purpose normal human serum was submitted to affinity chromatography on Con A-Sepharose and DNA-cellulose and to preparative polyacrylamide gel electrophoresis. The purified C3DP was identified by immunodiffusion and sodium dodecylsulfate polyacrylamide gel electrophoresis and it was shown to bind to DNA by DNA-cellulose chromatography. The isoelectric point of C3DP was determined to 4.9 by isoelectric focusing.  相似文献   

17.
A comparison has been made of the in vitro DNA-binding proteins of specific aneuploid and isogenic euploid cells of Saccharomyces cerevisiae by DNA-cellulose chromatography. We have been able to detect changes in the level of a small fraction of the yeast DNA-binding proteins which can be related to the dosage of specific yeast chromosomes. At least four proteins show a dosage related to the cellular level of chromosome I and at least one protein shows a dosage related to the level of chromosome VI.  相似文献   

18.
DNA-binding proteins of the yeast Saccharomyces cerevisiae have been examined by DNA-cellulose chromatography with the expectation that they should represent, in part, a subclass of those proteins which bind to or interact with the chromosomes in vivo. After a high speed supernatant of a deoxyribonuclease-treated cell lysate is passed through a column of calf thymus DNA-cellulose, the DNA-binding proteins are eluted with a discontinuous salt gradient. The DNA-binding proteins, which show a broad distribution in size when examined by electrophoresis on polyacrylamide slab-gels in the presence of sodium dodecyl sulfate, represent about 0.2–0.3% of the cell's protein corresponding to about 5 × 109-molecular weight of protein per haploid cell. Our data demonstrate quantitative and qualitative changes in the spectrum of DNA-binding proteins which may be correlated with changes in growth rate, stage of the growth cycle and phenotypic (repressed versus derepressed) and genetic alterations in mitochondrial function (grandes versus petites). The largest change which we have noted in the spectrum of DNA-binding proteins is between glucose-grown log-phase grande cells and grande cells in stationary phase. In many of the comparisons made, a number of specific DNA-binding proteins are seen to vary by as much as 5–10-fold. From estimates of the number of molecules of a DNA-binding protein present in the cell, we conclude that the system we have described is capable of detecting less than 100 molecules per yeast cell; within the range of the level of the lac represser in Escherichia coli.  相似文献   

19.
Second-step transfer of bacteriophage T5 DNA requires the function of the T5 pre-early proteins A1 and A2. We have isolated and characterized the gene A2 protein as part of an effort to determine the mechanism of second-step transfer. The A2 protein was purified by DNA-cellulose column chromatography followed by gel filtration and ion-exchange column chromatography. The A2 protein's identity was confirmed by two-dimensional gel electrophoresis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and thin-layer gel filtration in 6 M guanidine hydrochloride demonstrated a molecular weight of 15,000 for the A2 polypeptide. Migration of the A2 protein through gel filtration columns under nondenaturing conditions, in combination with sedimentation behavior, indicated dimerization of the A2 polypeptide. The existence of the A2 dimer was confirmed by protein cross-linking with dimethyl suberimidate and analysis of the cross-linked proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition, degree of polymerization, DNA-binding ability, and physical characteristics of the T5 gene A2 protein are consistent with a function of the A2 protein in DNA transfer.  相似文献   

20.
Phage lambda DNA was covalently coupled to epoxy-activated cellulose to form a stable DNA-cellulose matrix for affinity chromatography of sequence-specific DNA-binding proteins. The accessibility of three specific six-base sequences, GGATCC (BamHI), GAATTC (EcoRI) and AAGCTT (HindIII) was studied quantitatively and qualitatively by restriction analysis followed by labelling of their recessed ends. All sites are randomly accessible. The site accessibility is variable, BamHI greater than HindIII greater than EcoRI, and within the range 20-100% depending on base composition and internal structure of the sequence. DNA-epoxycellulose, because of its high efficiency of coupling, capacity, stability and accessibility, can be of great help in the isolation and characterization of sequence-specific DNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号