首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T and B lymphocytes migrate hundreds of micrometers each day to survey the body's lymphoid tissues for antigens. No other mammalian cell type undergoes such extensive and continual movement, raising the question of whether lymphocytes have specializations to support their migratory behavior. This possibility has recently gained support from studies of mice deficient in DOCK2, a member of the Caenorhabditis elegans Ced-5, mammalian DOCK180 and Drosophila melanogaster myoblast city (CDM) family of scaffolding proteins. Migration of lymphocytes, but not other cell types, is severely disrupted in DOCK2-deficient mice. Despite the conserved role of CDM molecules in regulating Rac activation and actin assembly, relatively little is known about how these molecules function. Here, we review the role of DOCK2 in lymphocyte homing to lymphoid tissues and discuss recent findings for other CDM family molecules that provide a basis for understanding how DOCK2 might function in lymphocytes.  相似文献   

2.
Dendritic cells (DC) are professional antigen-presenting cells that can be generated in vitro from CD34+ peripheral blood progenitor cells by recombinant cytokines. These cells have potential implications for immunotherapeutic approaches in the treatment of cancer and other diseases. Physiologically, immature DC in the periphery capture and process antigens, then mature to interdigitating DC and migrate to lymphoid organs, where they activate lymphocytes. However, it is not known if DC generated in vitro have the capacity to traffic in vivo to the lymphoid tissues, such as spleen and lymph nodes. We have investigated whether human radiolabeled DC differentiated in vitro migrate and localize to lymphoid tissues after intravenous and intralymphatic injection. The distribution and localization of the DC were evaluated in five patients with malignant melanoma using serial whole-body gamma camera imaging. Intravenously infused DC demonstrated transient lung uptake followed by localization in the spleen and liver for at least 7 days. DC injected into a lymphatic vessel at the dorsal foot were rapidly detected in the draining lymph nodes where they remained for more than 24 h. These data suggest that DC differentiated in vitro localize preferentially to lymphoid tissue, where they could induce specific immune responses. Received: 28 January 1999 / Accepted: 4 March 1999  相似文献   

3.
To further define the underlying mechanisms of immune suppression induced by UV-B irradiation, we have examined the kinetics of homing patterns of in vitro UV-B-irradiated and gamma-irradiated-thoracic duct lymphocytes (TDL) compared to dendritic cells (DC). Our findings show that 111In-oxine-labeled TDL specifically home to the spleen, liver, lymph nodes, and bone marrow with subsequent recirculation of a large number of cells from the spleen to lymph nodes. In contrast, DC preferentially migrate to the spleen and liver with a relatively insignificant distribution to lymph nodes and an absence of subsequent recirculation. Splenectomy prior to cell injection significantly diverts the spleen-seeking DC to the liver but not to the lymph nodes, while the homing of TDL to lymph nodes is significantly increased. In vitro exposure of 111In-oxine labeled TDL to gamma irradiation does not significantly impair immediate homing to lymphoid tissues but inhibits cell recirculation between 3 and 24 hr. In contrast, gamma irradiation does not affect the tissue distribution of labeled DC, suggesting that DC are more radioresistant to gamma irradiation than TDL. Unlike the findings in animals injected with gamma-irradiated cells, UV-B irradiation virtually abolished the homing of TDL to lymph nodes and significantly reduced the homing of the spleen-seeking DC to the splenic compartment while a large number of cells were sequestered in the liver. The results of in vitro cell binding assay show that TDL, unlike DC, have the capacity to bind to high endothelial venules (HEV) within lymph node frozen sections while gamma and UV-B irradiation significantly inhibit the binding of TDL to lymph node HEV. These findings suggest that: (i) DC, unlike TDL, are unable to recirculate from blood to lymph nodes through HEV; (ii) although gamma irradiation impairs TDL recirculation, it does not affect DC tissue distribution; and (iii) UV-B irradiation impairs both TDL and DC migration patterns. We conclude that the lack of capacity of irradiated TDL to home to lymph nodes is due to damage to cell surface homing receptors and that the failure of DC to home to the lymph node microenvironment is related to the absence of HEV homing receptors on their cell surface.  相似文献   

4.
Tissue-specific interactions with specialized high endothelial venules (HEV) direct the homing of lymphocytes from the blood into peripheral lymph nodes, mucosal lymphoid organs, and tissue sites of chronic inflammation. These interactions have been demonstrated in all mammalian species examined and thus appear highly conserved. To assess the degree of evolutionary divergence in lymphocyte-HEV recognition mechanisms, we have studied the ability of lymphocytes to interact with HEV across species barriers. By using an in vitro assay of lymphocyte binding to HEV in frozen sections of lymphoid tissues, we confirm that mouse, guinea pig, and human lymphocytes bind to xenogeneic as well as homologous HEV. In addition, we show that mouse and human lymphoid cell lines that bind selectively to either peripheral lymph node or mucosal vessels (Peyer's patches, appendix) in homologous lymphoid tissues exhibit the same organ specificity in binding to xenogeneic HEV. Furthermore, monoclonal antibodies that recognize lymphocyte "homing receptors" and block homologous lymphocyte binding to peripheral lymph node or to mucosal HEV, also inhibit lymphocyte interactions with xenogeneic HEV in a tissue-specific fashion. Similarly, anti-HEV antibodies against organ-specific mouse high endothelial cell "addressins" involved in lymphocyte homing to peripheral lymph node or mucosal lymphoid organs, not only block the adhesion of mouse lymphocytes but also of human lymphocytes to target mouse HEV. The results illustrate a remarkable degree of functional conservation of elements mediating these cell-cell recognition events involved in organ-specific lymphocyte homing.  相似文献   

5.
Immune responses are initiated in the T-cell areas of secondary lymphoid organs where na?ve T lymphocytes encounter dendritic cells (DCs) that present antigens taken up in peripheral tissues. DCs represent the interface between the universe of foreign and tissue-specific antigens and T lymphocytes, and they are the key players in the regulation of cell-mediated immunity. We discuss how the nature of the DC maturation stimuli and the density and quality of DCs present in the T-cell areas of secondary lymphoid organs determine the magnitude and class of the T-cell response.  相似文献   

6.
Migration of blood-borne lymphocytes into tissues involves a tightly orchestrated sequence of adhesion events. Adhesion molecules and chemokine receptors on the surface of circulating lymphocytes initiate contact with specialized endothelial cells under hemodynamic shear prior to extravasation across the vascular barrier into tissues. Lymphocyte–endothelial adhesion occurs preferentially in high endothelial venules (HEV) of peripheral lymphoid organs. The continuous recirculation of naïve and central memory lymphocytes across lymph node and Peyer’s patch HEV underlies immune surveillance and immune homeostasis. Lymphocyte–endothelial interactions are markedly enhanced in HEV-like vessels of extralymphoid organs during physiological responses associated with acute and chronic inflammation. Similar adhesive mechanisms must be invoked for efficient trafficking of immune effector cells to tumor sites in order for the immune system to have an impact on tumor progression. Here we discuss recent evidence for the role of fever-range thermal stress in promoting lymphocyte–endothelial adhesion and trafficking across HEV in peripheral lymphoid organs. Findings are also presented that support the hypothesis that lymphocyte–endothelial interactions are limited within tumor microenvironments. Further understanding of the molecular mechanisms that dynamically promote lymphocyte trafficking in HEV may provide the basis for novel approaches to improve recruitment of immune effector cells to tumor sites.  相似文献   

7.
Blood-borne lymphocytes migrate continuously to peripheral lymph nodes (PLN) and other organized lymphoid tissues where they are most likely to encounter their cognate antigen. Lymphocyte homing to PLN is a highly regulated process that occurs exclusively in specialized high endothelial venules (HEV) in the nodal paracortex. Recently, it has become possible to explore this vital aspect of peripheral immune surveillance by intravital microscopy of the subiliac lymph node microcirculation in anesthetized mice. This paper reviews technical and experimental aspects of the new model and summarizes recent advances in our understanding of the molecular mechanisms of lymphocyte homing to PLN which were derived from its use. Both lymphocytes and granulocytes initiate rolling interactions via L-selectin binding to the peripheral node addressin (PNAd) in PLN HEV. Subsequently, a G protein-coupled chemoattractant stimulus activates LEA-1 on rolling lymphocytes, but not on granulocytes. Thus. granulocytes continue to roll through the PLN, whereas LEA-I activation allows lymphocytes to arrest and emigrate into the extravascular compartment. We have also identified a second homing pathway that allows L-selectin low/(activated/memory) lymphocytes to home to PLN. P-selectin on circulating activated platelets can mediate simultaneous platelet adhesion to PNAd in HEV and to P-selectin glycoprotein ligand (PSGL)-l on lymphocytes. Through this mechanism, platelets can form a cellular bridge which can effectively substitute for the loss of L-selectin on memory cell subsets.  相似文献   

8.
The lymphatic system is not only essential for maintenance of normal fluid balance, but also for proper immunologic function by providing an extensive network of vessels, important for cell trafficking and antigen delivery, as well as an exclusive environment, the lymph node (LN), where antigen-presenting cells (APCs) and lymphocytes can encounter and interact. Among APCs, dendritic cells (DCs) have a remarkable capacity to traffic from peripheral tissues to the draining LN, which is critical for execution of their functions. To reach the LN, DCs must migrate towards and enter lymphatic vessels. Here, the authors review what is known about the factors that drive this process. They touch particularly on the topic of how DC migration is affected by inflammation and discuss this in the context of lymphatic function. Traditionally, inflammatory mediators are regarded to support DC migration to LNs because they induce molecules on DCs known to guide them to lymphatics. The authors recently showed that inflammatory signals present in a strong vaccine adjuvant induce swelling in LNs accompanied by lymphangiogenesis in the draining LN and radius of peripheral tissue. These increased lymphatics, at least for several days, lead to a more robust migration of DCs. However, the density of lymphatic vessels can become overly extended and/or their function impaired as observed during lymphedema and various chronic inflammatory reactions. Diseases characterized by chronic inflammation often present with impaired DC migration and adaptive immunity. Gaining a better understanding of how lymphatic vessel function may impact adaptive immunity by, for example, altering DC migration will benefit clinical research aiming to manipulate immune responses and manage chronic inflammatory diseases.  相似文献   

9.
Chemokines and dendritic cells: a crucial alliance   总被引:8,自引:0,他引:8  
Dendritic cells (DC) are bone marrow-derived professional antigen-presenting cells that function as sentinels of the immune system. Their importance in immunity resides in their unique ability to prime or tolerize T lymphocytes, thereby initiating or inhibiting immune responses. They reside in all tissues and organs and upon appropriate activation, migrate to secondary lymphoid organs to present antigen to T lymphocytes in the T cell zones. Because of this central role in T cell activation, there is a great deal of interest in using DC therapeutically to deliver positive or negative signals to the immune system. The DC system is critically dependent on the ability of DC at different stages of maturation to respond to a range of soluble and cell-bound signals, including members of the chemokine gene superfamily. This review will describe the interactions between DC and the chemokine system.  相似文献   

10.
The present study evaluated whether protein kinase C (PKC) activation was involved in the lymphocytosis promoting properties of pertussis toxin (Ptx). The exposure of mouse lymphocytes to phorbol esters (as a means to selectively activate PKC) caused a depression in their subsequent capacity to localize into lymph nodes and Peyer's patches in vivo. This pattern of inhibition was quite similar to that observed with lymphocytes treated with Ptx. The mechanisms responsible for the observed decreases in localization to lymphoid organs caused by these two agents, however, appeared to be distinct. Exposure of lymphocytes to PMA was followed by a time and dosage-dependent decrease in the surface density of MEL-14 defined homing receptors. Ptx-treated lymphocytes retained normal density of this homing receptor. Consequently, PMA-treated lymphocytes lost their capacity to bind to high-endothelial venules in in vitro lymph node binding assays while Ptx-treated cells retained normal high-endothelial venule binding potential. We conclude from this study that: 1) the activation of PKC in lymphocytes by PMA can alter their recirculation properties via mechanisms that diminish their expression of surface receptors which support extravasation into lymph node and mucosal lymphoid tissues, and 2) even though Ptx has been reported to elevate the rate of inositol phosphate turnover in lymphocytes, the loss of extravasation potential of Ptx-treated lymphocytes is not mediated via the modification of surface homing receptors as observed in cells exposed to the known PKC activator, PMA.  相似文献   

11.
The tissue localization or "homing" of circulating lymphocytes is directed in part by specialized vessels that define sites of lymphocyte exit from the blood. In peripheral lymph nodes, mucosal lymphoid tissues (Peyer's patches and appendix), and sites of chronic inflammation, for example, lymphocytes leave the blood by adhering to and migrating between those endothelial cells lining postcapillary high endothelial venules (HEV). Functional analyses of lymphocyte interactions with HEV have shown the lymphocytes can discriminate between HEV in different tissues, indicating that HEV express tissue-specific determinants or address signals for lymphocyte recognition. We recently described such a tissue-specific "vascular addressin" that is selectively expressed by endothelial cells supporting lymphocyte extravasation into mucosal tissues and that appears to be required for mucosa-specific lymphocyte homing (Streeter, P. R., E. L. Berg, B. N. Rouse, R. F. Bargatze, and E. C. Butcher. 1988. Nature (Lond.). 331:41-46). Here we document the existence and tissue-specific distribution of a distinct HEV differentiation antigen. Defined by monoclonal antibody MECA-79, this antigen is expressed at high levels on the lumenal surface and in the cytoplasm of HEV in peripheral lymph nodes. By contrast, although MECA-79 stains many HEV in the mucosal Peyer's patches, expression in most cases is restricted to the perivascular or ablumenal aspect of these venules. In the small intestine lamina propria, a mucosa-associated site that supports the extravasation of lymphocytes, venules do not stain with MECA-79. Finally, we demonstrate that MECA-79 blocks binding of both normal lymphocytes and a peripheral lymph node-specific lymphoma to peripheral lymph node HEV in vitro and that it also inhibits normal lymphocyte homing to peripheral lymph nodes in vivo without significantly influencing lymphocyte interactions with Peyer's patch HEV in vitro or in vivo. Thus, MECA-79 defines a novel vascular addressin involved in directing lymphocyte homing to peripheral lymph nodes.  相似文献   

12.
The memory T cell pool is characterized by a substantial degree of heterogeneity in phenotype and function as well as anatomical distribution, but the underlying mechanisms remain unclear. In this study we confirm that the memory CD4(+) T cell pool in wild-type and TCR-transgenic mice consists of heterogeneous subsets, as defined by surface marker expression or cytokine production. Extralymphoid sites contain significant numbers of memory CD4(+) T cells, which are phenotypically and functionally distinct from their lymphoid counterparts. However, we show in this study that the phenotype of lymphoid and extralymphoid memory T cells is not stable. Instead, the unique properties of extralymphoid memory T cells are acquired upon migration into extralymphoid sites and are lost when memory T cells migrate back into lymphoid organs. Thus, at least some of the extralymphoid properties may represent a transient activation state that can be adopted by T cells belonging to a single memory T cell pool. Furthermore, such intermittent activation during or after migration into extralymphoid sites could provide an important signal, promoting the survival and functional competence of memory T cells in the absence of Ag.  相似文献   

13.
The transplanted limb contains bone marrow tissue. The hematopoietic cells contained in the bone of the graft normally differentiate after transplantation and can be released to the recipient. The cells migrate to the recipient bone marrow cavities and lymphoid organs. This causes the immune reaction between the donor and the recipient, which develops not only in the graft itself but also in the recipient immune organs where donor bone marrow cells home. The purpose of this study was to investigate the process of migration of the hematopoietic cells from the donor limb to the recipient bone marrow cavities and lymphoid tissues. The questions the authors asked were: what is the rate of release of bone marrow cells from the transplanted bone, where do the released bone marrow cells home in the recipient, how fast are donor bone marrow cells rejected by the recipient, and can some bone marrow cells homing in the recipient tissues survive and create a state of microchimerism. Experiments were performed on Brown Norway and Lewis inbred rat strains (n = 30). Limb donors received intravenous chromium-51-labeled bone marrow cells. Twenty-four hours later, the limb with homing labeled bone marrow cells was transplanted to an allogeneic or syngeneic recipient. The rate of radioactivity of bone marrow cells released from the graft and homing in recipient tissues was measured after another 24 hours. To eliminate factors adversely affecting homing such as the "crowding effect" and allogeneic elimination of bone marrow cells by natural killer cells, total body irradiation and antiasialo-GM1 antiserum were applied to recipients before limb transplantation. In rats surviving with the limb grafts for 7 and 30 days, homing of donor bone marrow cells was studied by specific labeling of donor cells and flow cytometry as well as by detecting donor male Y chromosome. The authors found that transplantation of the limb with bone marrow in its natural spatial relationship with stromal cells and blood perfusion brings about immediate but low-rate release of bone marrow cells and their migration to recipient bone marrow and lymphoid tissues. Large portions of allogeneic bone marrow cells are rapidly destroyed in the mechanism of allogeneic elimination by radioresistant but antiasialo-GM1-sensitive natural killer cells. Some transplanted bone marrow cells remain in the recipient's tissues and create a state of cellular and DNA microchimerism. A low number of physiologically released donor bone marrow cells do not seem to adversely affect the clinical outcome of limb grafting. Quite the opposite, a slight prolongation of the graft survival time was observed.  相似文献   

14.
The hallmarks of the immune response to viral infections are the expansion of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) after they encounter antigen-presenting cells in the lymphoid tissues and their subsequent redistribution to nonlymphoid tissues to deal with the pathogen. Control mechanisms exist within CTL activation pathways to prevent inappropriate CTL responses against disseminating infections with a broad distribution of pathogen in host tissues. This is demonstrated during overwhelming infection with the noncytolytic murine lymphocytic choriomeningitis virus, in which clonal exhaustion (anergy and/or deletion) of CTLs prevents immune-mediated pathology but allows persistence of the virus. The mechanism by which the immune system determines whether or not to mount a full response to such infections is unknown. Here we present data showing that the initial encounter of specific CTLs with infected cells in lymphoid tissues is critical for this decision. Whether the course of the viral infection is acute or persistent for life primarily depends on the degree and kinetics of CTL exhaustion in infected lymphoid tissues. Virus-driven CTL expansion in lymphoid tissues resulted in the migration of large quantities of CTLs to nonlymphoid tissues, where they persisted at stable levels. Surprisingly, although virus-specific CTLs were rapidly clonally exhausted in lymphoid tissues under conditions of chronic infection, a substantial number of them migrated to nonlymphoid tissues, where they retained an effector phenotype for a long time. However, these cells were unable to control the infection and progressively lost their antiviral capacities (cytotoxicity and cytokine secretion) in a hierarchical manner before their eventual physical elimination. These results illustrate the differential tissue-specific regulation of antiviral T-cell responses during chronic infections and may help us to understand the dynamic relationship between antigen and T-cell populations in many persistent infections in humans.  相似文献   

15.
Trafficking of natural killer cells   总被引:5,自引:0,他引:5  
Natural killer (NK) cells comprise a set of lymphocytes that is capable of mediating innate immune responses to viral infections, malignancies, and allogeneic bone marrow grafts. This review summarizes what is known about the mechanisms NK cells use to arrive at their sites of action. NK cells express a wide array of adhesion molecules including alphaLbeta2, alphaMbeta2, alphaXbeta2, and alpha4beta1 integrins, ICAM-1, PSGL-1, and L-selectin. Like other immune and inflammatory cells, NK cells use the blood circulation to enter tissues and organs, which requires that they interact with the vessel wall under flow conditions, arrest, and transmigrate. NK cells are able to chemotax to a variety of cytokines and chemokines, including IL-12, IFN-(alpha/beta, CCL2, 3, 4, 5, 7, 8, CXCL8, and CX3CL1. In many cases, NK cells appear to migrate towards these soluble factors without any kind of priming. These cells also appear to distribute in secondary and tertiary lymphoid sites (i.e., spleen, bone marrow, liver, lung, and lymph nodes) both with and without stimulation. In addition to their ability to move throughout the body in an unprimed state, activated NK cells may have increased specificity in homing to sites of inflammation. NK cells not only react to, but also produce IFN-gamma, TNF-alpha, GM-CSF, CCL3, CCL4, and CCL5, enabling them to recruit various immune cells to sites of immune response.  相似文献   

16.
Lymphoid tumors display a wide variety of growth patterns in vivo, from that of a solitary extralymphoid tumor, to a general involvement of all lymphoid organs. Normal lymphocytes are uniquely mobile cells continuously recirculating between blood and lymph throughout much of their life cycle. Therefore, it is reasonable to propose that disseminating malignant lymphocytes may express recirculation characteristics or homing properties consistent with that of their normal lymphoid counterparts. Trafficking of lymphocytes involves the expression and recognition of both lymphocyte homing receptors and their opposing receptors on endothelium, the vascular addressins. These cell surface elements direct the tissue-selective localization of lymphocyte subsets in vivo into organized lymphoid organs and sites of chronic inflammation where specific binding events occur between lymphocytes and the endothelium of specialized high endothelial venules (HEV). In a recent murine study of 13 lymphoma lines, we found that lymphomas that bind well to high endothelial venules, in the Stamper-Woodruff in vitro assay (an assay of lymphocyte binding to venules in frozen sections of peripheral lymph nodes or Peyer's patches), spread hematogenously to all high endothelial venule bearing lymphoid organs, whereas non-binding lymphomas did not. In some cases lymphomas that bound with a high degree of selectivity to peripheral lymph node (PLN) high endothelial venules exhibited only limited organ preference of metastasis, involving the mucosal lymphoid organs Peyer's patches (PP) in addition to the peripheral lymph nodes of adoptive recipients. Here we demonstrate that Peyer's patch high endothelial venules express a low but functional level of peripheral lymph node addressin (MECA-79) that can be recognized by lymphomas expressing the peripheral lymph node homing receptor (MEL-14 antigen).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To trigger an effective T cell-mediated immune response in the skin, cutaneous dendritic cells (DC) migrate into locally draining lymph nodes, where they present Ag to naive T cells. Little is known about the interaction of DC with the various cellular microenvironments they encounter during their migration from the skin to lymphoid tissues. In this study, we show that human DC generated from peripheral blood monocytes specifically interact with human dermal fibroblasts via the interaction of beta(2) integrins on DC with Thy-1 (CD90) and ICAM-1 on fibroblasts. This induced the phenotypic maturation of DC reflected by expression of CD83, CD86, CD80, and HLA-DR in a TNF-alpha- and ICAM-1-dependent manner. Moreover, fibroblast-matured DC potently induced T cell activation reflected by CD25 expression and enhanced T cell proliferation. Together these data demonstrate that dermal fibroblasts that DC can encounter during their trafficking from skin to lymph node can act as potent regulators of DC differentiation and function, and thus may actively participate in the regulation and outcome of DC-driven cutaneous immune responses.  相似文献   

18.
tT cells migrate to lymphoid organs to become activated through specific contacts with antigen-presenting cells bearing foreign antigens. During migration and activation, T lymphocytes are exposed not only to diverse biochemical inputs, but also to different mechanical conditions. Passage from the blood or lymph to solid tissues involves lymphocyte rolling, firm arrest and diapedesis through endothelial monolayers. Throughout this process, cells are subjected to diverse fluid flow regimes. After extravasation, T lymphocytes crawl through viscoelastic media of different biochemical and mechanical properties and geometries. In lymph nodes, T cell contact with antigen-presenting cells is guided by rigidity cues and ligand-receptor interactions. T lymphocyte adaptation to diverse mechanical regimes involves multiple signaling and morphological modifications, many of which enable the conversion of mechanical forces into biochemical signals and vice-versa. These components enable T lymphocyte survival, homing and activation. Here, we review the mechanisms that enable T lymphocytes to survive and thrive under the different mechanical conditions they encounter during their life cycle. These processes require the integration of diverse signaling networks that convert extracellular mechano-chemical cues into force, movement and activation.  相似文献   

19.
In this second article on mucosal defence and transepithelial transport, Jean-Pierre Kraehenbuhl and Marian Neutra discuss the part played by a special class of antibody, polymeric IgA, in the protection of mucosal surfaces lining the digestive, respiratory and genital tracts, and the implications for mucosal vaccines. Polymeric IgA crosslinks luminal antigens or pathogens, thus preventing their interaction with epithelial cells. Following stimulation by antigen in the organized mucosal lymphoid tissue, effector B lymphocytes enter the circulation and migrate to distant mucosal or glandular sites, where they differentiate into polymeric-IgA-producing plasma cells. These antibodies reach the environment by transport across the epithelial cells of mucosal and glandular tissues.  相似文献   

20.
Uridine nucleotides are endogenous nucleotides which are released into the extracellular space from mechanical stressed endothelial and epithelial cells as well as lipopolysaccharide (lps)-stimulated monocytes. Here, we studied the biological activity of the selective purinoreceptor P2Y6 (P2YR6) agonist Uridine 5'diphosphate (UDP) as well as the P2YR2- and P2YR4-activating uridine 5'triphosphate (UTP) on human dendritic cells (DC). These cells in their immature state have the ability to migrate from blood to peripheral target sites where they sense dangerous signals and capture potential antigens. Moreover, mature DC induce innate immune responses and migrate from peripheral tissues to secondary lymphoid organs in order to activate naive T cells and initiate adaptive immunity. Here, we were able to show that uridine nucleotides stimulated Ca(2+) transients, actin polymerization, and chemotaxis in immature DC. Experiments with pertussis toxin, the stable pyrimidine agonist uridine 5'-O-(2-thiodiphosphate) (UDPgammaS) and receptor antagonists, as well as desensitization studies suggested that these uridine nucleotides activities were mediated by different G(i) protein-coupled receptors. During lps-induced maturation, DC lost their ability to respond towards uridine nucleotides with these activities. Instead, UDP, but not UTP, stimulated the release of the CXC-chemokine 8 (CXCL8) from mature DC in a reactive blue sensitive manner. Moreover, our study indicates that UDP stimulates different signaling pathways in immature and mature DC in order to favor the accumulation of immature DC and to augment the capacity to secrete CXCL8 in mature DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号