首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetes mellitus-associated ischemic heart disease is a major public burden in industrialized countries. Reperfusion to a previously ischemic myocardium is obligatory to reinstate its function prior to irreversible damage. However, reperfusion is considered ‘a double-edged sword’ as reperfusion per se could augment myocardial ischemic damage, known as myocardial ischemia-reperfusion (I/R) injury. The brief and repeated cycles of I/R given before a sustained ischemia and reperfusion are represented as ischemic preconditioning, which protects the heart from lethal I/R injury. Few studies have demonstrated preconditioning-mediated cardioprotection in the diabetic heart. In contrast, considerable number of studies suggests that myocardial defensive effects of preconditioning are abolished in the presence of chronic diabetes mellitus that raised questions over preconditioning effects in the diabetic heart. It is evidenced that chronic diabetes mellitus-associated deficit in survival pathways, impaired function of mito-KATP channels, MPTP opening and high oxidative stress play key roles in paradoxically suppressed cardioprotective effects of preconditioning in the diabetic heart. These controversial results open up a new area of research to identify potential mechanisms influencing disparities on preconditioning effects in diabetic hearts. In this review, we discussed first the discrepancies on the modulatory role of diabetes mellitus in I/R-induced myocardial injury. Following this, we addressed whether preconditioning could protect the diabetic heart against I/R-induced myocardial injury. Moreover, potential mechanisms pertaining to the attenuated cardioprotective effects of preconditioning in the diabetic heart have been delineated. These are important to be understood for better exploitation of preconditioning strategies in limiting I/R-induced myocardial injury in the diabetic heart.  相似文献   

2.
SMT对大鼠在体心脏缺血-再灌注损伤超微结构的保护作用   总被引:4,自引:0,他引:4  
目的:研究SMT对心脏缺血-再灌注损伤(IRI)心肌超微结构的影响。方法:SD大鼠18只,体重320 ̄380g,随机分为三组:①缺血-再灌注组(IR):夹闭冠状动脉左前降支60min,松夹20min。②缺血-再灌注+SMT组(SMT):再灌注前5min,股静脉注射iNOS抑制剂S-methylisothiourea sulfate(SMT 5mg/kg w),余同IR组;③对照组(C):暴露心脏后  相似文献   

3.
AMPK activation during ischemia helps the myocardium to cope with the deficit of energy production. As AMPK activity is considered to be impaired in diabetes, we hypothesized that enhancing AMPK activation during ischemia above physiological levels would protect the ischemic diabetic heart through AMPK activation and subsequent inhibition of mitochondrial permeability transition pore (mPTP) opening. Isolated perfused hearts from normoglycemic Wistar or diabetic Goto-Kakizaki (GK) rats (n ≥ 6/group) were subjected to 35 min of ischemia in the presence of 10, 20, and 40 μM of A-769662, a known activator of AMPK, followed by 120 min of reperfusion with normal buffer. Myocardial infarction and AMPK phosphorylation were assessed. The effect of A-769662 on mPTP opening in adult cardiomyocytes isolated from both strains was also determined. A-769662 at 20 μM reduced infarct size in both Wistar (30.5 ± 2.7 vs. 51.8 ± 3.9% vehicle; P < 0.001) and GK hearts (22.7 ± 3.0 vs. 48.5 ± 4.7% vehicle; P < 0.001). This protection was accompanied by a significant increase in AMPK and GSK-3β phosphorylation. In addition, A-769662 significantly inhibited mPTP opening in both Wistar and GK cardiomyocytes subjected to oxidative stress. We demonstrate that AMPK activation during ischemia via A-769662 reduces myocardial infarct size in both the nondiabetic and diabetic rat heart. Furthermore, this cardioprotective effect appears to be mediated through inhibition of mPTP opening. Our findings suggest that improving AMPK activation during ischemia can be another mechanism for protecting the ischemic heart.  相似文献   

4.
Dysbalance in reactive oxygen/nitrogen species is involved in the pathogenesis of cerebral ischemia/reperfusion injury (IRI). Ginkgo biloba extract (Egb 761) pre-treatment was used to observe potential antioxidant/neuroprotective effect after global ischemia/reperfusion. Egb 761 significantly decreased the level of lipoperoxidation (LPO) in rat forebrain total membrane fraction (homogenate) induced by in vitro oxidative stress (Fe(2+)+H(2)O(2)). In animals subjected to four-vessel global ischemia for 15 min and 2-24 h reperfusion the EGb pretreatment slightly decreased LPO in forebrain homogenate. However, as detected in EGb treated group, the LPO-induced lysine conjugates are attenuated in comparison to non-treated IRI animals. EGb significantly improved parameters which indicate forebrain protein oxidative damage after IRI. The intensity of tryptophane fluorescence was increased by the 18.2% comparing to non-treated IRI group and bityrosine fluorescence was significantly decreased in ischemic (21%) and 24 h reperfused (15.9%) group in comparison non-treated IRI group. In addition, the level of total free SH- groups in pre-treated animals was significantly higher comparing to non-treated animals. Our results indicate that extract of EGb 761 has potent antioxidant activity and could play a role to attenuate the IRI-induced oxidative protein modification and lipoperoxidation in the neuroprotective process.  相似文献   

5.
Apoptosis or programmed cell death is a genetically controlled response for cells to commit suicide and is associated with DNA fragmentation or laddering. The common inducers of apoptosis include oxygen free radicals/oxidative stress and Ca2+ which are also implicated in the pathogenesis of myocardial ischemic reperfusion injury. To examine whether ischemic reperfusion injury is mediated by apoptotic cell death, isolated perfused rat hearts were subjected to 15, 30 or 60 min of ischemia as well as 15 min of ischemia followed by 30, 60, 90 or 120 min of reperfusion. At the end of each experiment, the heart was processed for the evaluation of apoptosis and DNA laddering. Apoptosis was studied by visualizing the apoptotic cardiomyocytes by direct fluorescence detection of digoxigenin-labeled genomic DNA using APOPTAG® in situ apoptosis detection kit. DNA laddering was evaluated by subjecting the DNA obtained from the hearts to 1.8% agarose gel electrophoresis and photographed under UV illumination. The results of our study revealed apoptotic cells only in the 90 and 120 min reperfused hearts as demonstrated by the intense fluorescence of the immunostained digoxigenin-labeled genomic DNA when observed under fluorescence microscopy. None of the ischemic hearts showed any evidence of apoptosis. These results were corroborated with the findings of DNA fragmentation which showed increased ladders of DNA bands in the same reperfused hearts representing integer multiples of the internucleosomal DNA length (about 180 bp). The presence of apoptotic cells and DNA fragmentation in the myocardium were completely abolished by subjecting the myocardium to repeated short-term ischemia and reperfusion which also reduced the ischemic reperfusion injury as evidenced by better recovery of left ventricular performance in the preconditioned myocardium. The results of this study indicate that reperfusion of ischemic heart, but not ischemia, induces apoptotic cell death and DNA fragmentation which can be inhibited by myocardial adaptation to ischemia.  相似文献   

6.
G X Wang  G R Li  Y D Wang  T S Yang  Y B Ouyang 《Life sciences》2001,69(23):2801-2810
We have studied the forms of cell death following ischemia/reperfusion, and the influence of diabetes mellitus (DM) as an additional factor. Based on the models of diabetes and middle cerebral artery occlusion (MCAO), characteristics of cell death after ischemia/reperfusion were evaluated synthetically by different methods: pathology, FCM, TUNEL and DNA agarose electrophoresis. The results showed that the occurrence of cerebral injury after ischemia/reperfusion was accompanied by cell necrosis and cell apoptosis. Cell apoptosis was mainly located in the ischemic penumbral (IP) zone around the densely ischemic focus. The ischemic core was characterized by cell necrosis. At the same time, the results showed that the process of ischemic cerebral injury worsened by DM was related to inducing cell apoptosis in IP and mid zone. In conclusion, there existed not only cell apoptosis but cell necrosis in brain damage following focal cerebral ischemia/reperfusion and showed a close, internal relationship between them. Brain damage following cerebral ischemia/reperfusion was worsened distinctly under diabetic conditions.  相似文献   

7.
Diabetic heart is suggested to exhibit either increased or decreased resistance to ischemic injury. Ischemic preconditioning suppresses arrhythmias in the normal heart, whereas relatively little is known about its effects in the diseased myocardium. Our objective was to investigate whether development of diabetes mellitus modifies the susceptibility to ischemia-induced arrhythmias and affects preconditioning in the rat heart. Following 1 and 9 weeks of streptozotocin-induced (45 mg/kg, i.v.) diabetes, the hearts were Langendorff-perfused at constant pressure of 70 mm Hg and subjected to test ischemia induced by 30 min occlusion of the left anterior descending (LAD) coronary artery. Preconditioning consisted of one cycle of 5 min ischemia and 10 min reperfusion, prior to test ischemia. Susceptibility to ischemia-induced arrhythmias was lower in 1-week diabetics: only 42 % of diabetic hearts exhibited ventricular tachycardia (VT) and 16 % had short episodes of ventricular fibrillation (VF) as compared to VT 100 % and VF 70 % (including sustained VF 36 %) in the non-diabetics (P<0.05). Development of the disease was associated with an increased incidence of VT (VT 92 %, not significantly different from non-diabetics) and longer total duration of VT and VF at 9-weeks, as compared to 1-week diabetics. Preconditioning effectively suppressed arrhythmias in the normal hearts (VT 33 %, VF 0 %). However, it did not provide any additional antiarrhythmic protection in the acute diabetes. On the other hand, in the preconditioned 9-weeks diabetic hearts, the incidence of arrhythmias tended to decrease (VT 50 %, transient VF 10 %) and their severity was reduced. Diabetic rat hearts are thus less susceptible to ischemia-induced arrhythmias in the acute phase of the disease. Development of diabetes attenuates increased ischemic tolerance, however, diabetic hearts in the chronic phase can benefit more from ischemic preconditioning, due to its persisting influence.  相似文献   

8.
Cardiovascular autonomic neuropathy causes abnormalities in the diabetic heart with various clinical sequelae, including exercise intolerance, arrhythmias and painless myocardial infarction. Little is known about (ultra)structural alterations of the myocardial nervous network. On the assumption that this diabetes-specific neuropathy develops due to permanently increased oxidative stress by liberation of oxygen-free radicals, adjuvant application of antioxidative therapeutics appears promising in preventing or delaying long-term diabetic complications. We have investigated the effects of Ginkgo biloba extract (EGb 761), a radical scavenger, against diabetes-induced myocardial nervous damage in spontaneously diabetic BioBreeding/Ottawa Karlsburg (BB/OK) rats. Morphological and morphometric parameters were evaluated by electron microscopy. We used immunohistochemistry to investigate protein expression of protein gene product 9.5, S100 protein, and thyroxin hydroxylase as a neuronal marker. Alterations of cardiac sympathetic activity were measured using the in vivo 123I-metaiodobenzyl-guanidine imaging, and the immunofluorescent labeling of beta1-adrenergic receptors and adenylate cyclase. Our results revealed that A) Diabetes results in slight to moderate ultrastructural alterations (hydrops, disintegration of substructure) of autonomic nerve fibers and related Schwann cells in untreated BB diabetic rats; B) Cardiac sympathetic integrity and activity is impaired due to alterations in the presynaptic nerve terminals and the postsynaptic ?1-AR-AC coupling system; C) Pre-treatment of diabetic myocardium with EGb results in an improvement of most of these parameters compared to unprotected myocardium. In conclusion, EGb may act as a potent therapeutic adjuvant in diabetics with respect to cardiovascular autonomic neuropathy, which may contribute to the prevention of late complications in diabetes.  相似文献   

9.
Diabetic heart (diabetes mellitus [DM]) has been shown to attenuate the beneficial effect of ischemic preconditioning (IPC) in rat heart. But the effect of IPC on diabetic rat heart that develops myopathy remains unclear. This study was designed to test the impact of IPC on diabetic cardiomyopathy (DCM) rat heart. Male Wistar rats were grouped as (a) normal, (b) DM (streptozotocin: 65 mg/kg; fed with normal diet), and (c) DCM (streptozotocin: 65 mg/kg; fed with high‐fat diet). Isolated rat hearts from each group were randomly subjected to (a) normal perfusion, (b) ischemia‐reperfusion (I/R), and (c) IPC procedure. At the end of the perfusion experiments, hearts were analyzed for injury, contractile function, mitochondrial activity, and oxidative stress. The results obtained from hemodynamics, cardiac injury markers, and caspase‐3 activity showed that DCM rat displayed prominent I/R‐associated cardiac abnormalities than DM rat heart. But the deteriorated physiological performance and cardiac injury were not recovered in both DM and DCM heart by IPC procedure. Unlike normal rat heart, IPC did not reverse mitochondrial dysfunction (determined by electron transport chain enzymes activity, ATP level, and membrane integrity, expression levels of genes like PGC‐1ɑ, GSK3β, complex I, II, and V) in DCM and DM rat heart. The present study demonstrated that IPC failed to protect I/R‐challenged DCM rat heart, and the underlying pathology was associated with deteriorated mitochondrial function.  相似文献   

10.
Oxidative stress can cause extensive damage to cardiac tissue under reperfusion conditions. However, preconditioning the myocardium may diminish these negative effects and alleviate reperfusion injury. There are a variety of preconditioning therapies, such as ischemic preconditioning (IPC) and hypoxic preconditioning (HPC), each targeting specific channels, receptors, and/or intracellular molecules. Ischemic preconditioning involves brief periods of ischemia followed by brief periods of reperfusion, thus strengthening the cardiac resistance for a longer period of ischemia. IPC involves complex mechanisms, some of which are still not completely understood today. Nevertheless, many studies have already established models of IPC. In addition, similar to IPC, HPC has also been recognized as preventing reperfusion injury. Reactive oxygen species (ROS) are known mediators of IPC and HPC. Particularly, mitochondria-generated ROS initiate activity of several beneficial preconditioning pathways. The role of ROS is paradoxical; low levels of ROS are key factors in signaling IPC/HPC, but high levels of ROS can contribute to increased oxidative stress on cardiomyocytes. Therefore, it is important to determine the molecular mechanism of IPC and HPC to avoid excessive accumulation of ROS to prevent cardiac injury. In this review, we will outline IPC and HPC, explaining the putative role of ROS in both pathways. We will also discuss preconditioning efficacy in certain conditions such as exercise and how the aging myocardium responds to preconditioning therapies.  相似文献   

11.
The biochemical events surrounding ischemia reperfusion injury in the acute setting are of great importance to furthering novel treatment options for myocardial infarction and cardiac complications of thoracic surgery. The ability of certain drugs to precondition the myocardium against ischemia reperfusion injury has led to multiple clinical trials, with little success. The isolated heart model allows acute observation of the functional effects of ischemia reperfusion injury in real time, including the effects of various pharmacological interventions administered at any time-point before or within the ischemia-reperfusion injury window. Since brief periods of ischemia can precondition the heart against ischemic injury, in situ aortic cannulation is performed to allow for functional assessment of non-preconditioned myocardium. A saline filled balloon is placed into the left ventricle to allow for real-time measurement of pressure generation. Ischemic injury is simulated by the cessation of perfusion buffer flow, followed by reperfusion. The duration of both ischemia and reperfusion can be modulated to examine biochemical events at any given time-point. Although the Langendorff isolated heart model does not allow for the consideration of systemic events affecting ischemia and reperfusion, it is an excellent model for the examination of acute functional and biochemical events within the window of ischemia reperfusion injury as well as the effect of pharmacological intervention on cardiac pre- and postconditioning. The goal of this protocol is to demonstrate how to perform in situ aortic cannulation and heart excision followed by ischemia/reperfusion injury in the Langendorff model.  相似文献   

12.
Ischemia and reperfusion result in mitochondrial dysfunction, with decreases in oxidative capacity, loss of cytochrome c, and generation of reactive oxygen species. During ischemia of the isolated perfused rabbit heart, subsarcolemmal mitochondria, located beneath the plasma membrane, sustain a loss of the phospholipid cardiolipin, with decreases in oxidative metabolism through cytochrome oxidase and the loss of cytochrome c. We asked whether additional injury to the distal electron chain involving cardiolipin with loss of cytochrome c and cytochrome oxidase occurs during reperfusion. Reperfusion did not lead to additional damage in the distal electron transport chain. Oxidation through cytochrome oxidase and the content of cytochrome c did not further decrease during reperfusion. Thus injury to cardiolipin, cytochrome c, and cytochrome oxidase occurs during ischemia rather than during reperfusion. The ischemic injury leads to persistent defects in oxidative function during the early reperfusion period. The decrease in cardiolipin content accompanied by persistent decrements in the content of cytochrome c and oxidation through cytochrome oxidase is a potential mechanism of additional myocyte injury during reperfusion.  相似文献   

13.
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a ubiquitously expressed membrane protein that regulates intracellular pH in the myocardium and other tissues. NHE1 is an important mediator of myocardial damage that occurs after ischemia–reperfusion injury. It has also been implicated in apoptotic damage in many tissues and its expression and activity are elevated in disease states in the myocardium. In this study, we examined the effect of additional exogenous NHE1 expression on isolated cardiomyocytes susceptibility to ischemia/reperfusion damage. Exogenous NHE1 elevated Na+/H+ exchanger expression and activity when introduced into isolated cardiomyocytes through an adenoviral system. Isolated cardiomyocytes were subjected to simulated ischemia and reperfusion after infection with either control or NHE1-containing adenovirus. Cells were placed into an anaerobic chamber and effects of NHE1 expression after hypoxia/reoxygenation were examined. Hypoxia/reoxygenation increased caspase-3-like activity in controls, and the effect was greatly magnified in cells expressing NHE1 protein. It also elevated the percentage of apoptotic cardiomyocytes, which was also aggravated by expression of NHE1 protein. Hypoxia/reoxygenation also increased phospho-ERK levels. Elevated NHE1 expression was coincidental with increased expression of the ER stress protein, protein disulfide isomerase (PDI) and calreticulin (CRT). Our results demonstrate that increased NHE1 protein expression makes cells more susceptible to damage induced by hypoxia/reoxygenation in isolated cardiomyocytes. They suggest that elevated NHE1 in cardiovascular disease could predispose the human myocardium to enhanced apoptotic damage.  相似文献   

14.
If a coronary blood vessel is occluded and the neighboring cardiomyocytes deprived of oxygen, subsequent reperfusion of the ischemic tissue can lead to oxidative damage due to excessive generation of reactive oxygen species. Cardiomyocytes and their mitochondria are the main energy producers and consumers of the heart, and their metabolic changes during ischemia seem to be a key driver of reperfusion injury. Here, we hypothesized that tracking changes in cardiomyocyte metabolism, such as oxygen and ATP concentrations, would help in identifying points of metabolic failure during ischemia and reperfusion. To track some of these changes continuously from the onset of ischemia through reperfusion, we developed a system of differential equations representing the chemical reactions involved in the production and consumption of 67 molecular species. This model was validated and used to identify conditions present during periods of critical transition in ischemia and reperfusion that could lead to oxidative damage. These simulations identified a range of oxygen concentrations that lead to reverse mitochondrial electron transport at complex I of the respiratory chain and a spike in mitochondrial membrane potential, which are key suspects in the generation of reactive oxygen species at the onset of reperfusion. Our model predicts that a short initial reperfusion treatment with reduced oxygen content (5% of physiological levels) could reduce the cellular damage from both of these mechanisms. This model should serve as an open-source platform to test ideas for treatment of the ischemia reperfusion process by following the temporal evolution of molecular concentrations in the cardiomyocyte.  相似文献   

15.
Myocardial ischemia during cardiopulmonary bypass terminated by reperfusion generally leads to different degrees of damage of the cardiomyocytes induced by transient cytosolic Ca(2+) overload. Recently, much attention has been paid to the role of heart-specific Ca(2+)-binding proteins in the pathogenesis of myocardial ischemia-reperfusion injury. S100A1 is a heart-specific EF-hand Ca(2+)-binding protein that is directly involved in a variety of Ca(2+)-mediated functions in myocytes. The aim of our study was to investigate the localization and translocation of S100A1 in the human heart under normal (baseline) conditions and after prolonged ischemia and reperfusion of the myocardium. Our data suggest that S100A1 is directly involved in the transient perioperative myocardial damage caused by ischemia during open heart surgery in humans. Given its role in the contractile function of muscle cells, this S100 protein could be an important "intracellular link" in ischemia-reperfusion injury of the heart.  相似文献   

16.
In the present study we investigated the effects of simvastatin treatment on lipid metabolism and peroxidation, antioxidant enzyme activities and ultrastructure of the diabetic rat myocardium. Diabetes was induced by single injection of streptozotocin (45 mg/kg i.p.). Eight weeks after induction of diabetes, a subgroup of control and of diabetic rats was treated with simvastatin for 4 weeks (10 mg/kg/day, orally). Blood glucose, plasma cholesterol and triacylglycerol, as well as levels of cardiac thiobarbituric acid reactive substances (TBARS) were significantly increased in diabetic rats. The activities of antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GSHPx), were also elevated in the diabetic myocardium. Treatment with simvastatin markedly reduced serum triacylglycerol and cholesterol, and partially controlled hyperglycemia in diabetic animals. The increased activation of antioxidant enzymes and the excess of lipid peroxidation measured by TBARS were completely reversed by simvastatin treatment. Diabetic rats displayed ultrastructural ischemia-like alterations of cardiomyocytes and capillaries, which support oxidative stress-induced tissue remodelling. In the diabetic myocardium simvastatin treatment partly attenuated angiopathic and atherogenic processes, detected by electron microscopy. These results suggest that simvastatin, known as a lipid-lowering drug, may positively affect diabetes induced cardiovascular complications via reducing risks of atherosclerotic pathological processes, such as imbalance between oxidant and antioxidant state.  相似文献   

17.
Zhong N  Zhang Y  Zhu HF  Zhou ZN 《生理学报》2000,52(5):375-380
本文用离体Langendorff灌流大鼠心脏造成急性心肌缺血/再灌注损伤模型,观察间歇性低氧暴露保护心肌线粒体的作用。以聚合酶链式反应(PCR)方法和电子显微镜技术,观察线粒体DNA(mtDNA^4834)片段缺失和超微结构的变化。大鼠暴露于模拟海拔5000米低氧环境(6h/d,28d)明显降低mtDNA^4834缺失的发生率(28.57%,vs常氧对照组87.5% P〈0.05);而且能够明显减  相似文献   

18.
Ischemic heart disease is a leading cause of death worldwide. Myocardial ischemia results in reduced coronary flow, followed by diminished oxygen and nutrient supply to the heart. Reperfusion to an ischemic myocardium often augments the ischemic damage, known as ischemia-reperfusion (I/R) injury. Number of studies demonstrated that the hyperlipidemic myocardium is rather sensitive and more vulnerable to I/R-induced myocardial injury. Repeated brief ischemia and reperfusion cycles, termed as ischemic preconditioning, given before a sustained ischemia is known to reduce myocardial damage occur as a result of I/R. A plethora of evidence supports the fact that preconditioning is one of the promising interventional strategies having an ability to limit I/R-induced myocardial injury. Despite this fact, the preconditioning-mediated cardioprotection is blunted in chronic hyperlipidemic condition. This suggests that preconditioning is moderately a ‘healthy heart protective phenomenon’. The mechanisms by which chronic hyperlipidemia abrogates cardioprotective effects of preconditioning are uncertain and are not completely understood. The impaired opening of mitochondrial-KATP channels, eNOS uncoupling and excessive generation of superoxides in the hyperlipidemic myocardium could play a role in attenuating preconditioning-mediated myocardial protection against I/R injury. Moreover, hyperlipidemia-induced loss of cardioprotective effect of preconditioning is associated with redistribution of both sarcolemmal and mitochondrial Connexin 43. We addressed, in this review, the potential mechanisms involved in hyperlipidemia-induced impairment of myocardial preconditioning. Additionally, novel pharmacologic interventions to attenuate hyperlipidemia-associated exaggerated I/R-induced myocardial injury have been discussed.  相似文献   

19.
Physiological parameters, rates of mitochondrial respiration, high energy phosphate levels and creatine phosphokinase (CPK) activity were investigated in the hearts from control and alloxan-induced diabetic rabbits before and after 40-min total ischemia and reperfusion. Diabetic hearts demonstrated significant decreases in the rates of contraction (+dP/dt) and relaxation (-dP/dt), heart rates and cardiac work compared to control hearts. Determination of mitochondrial respiration rates in saponin-skinned fibers showed a low mitochondrial respiratory function in diabetic hearts. It was found that the ATP and ADP levels and the total and mitochondrial isoenzyme activities of CPK in diabetic hearts were lowered in comparison with control. A post-ischemic recovery of cardiac performance for diabetic hearts was better than in controls. After reperfusion diabetic hearts had increased ATP levels. The data obtained demonstrate some abnormalities of both cardiac performance and energy metabolism in the hearts of diabetic animals and a decreased sensitivity of the latter to ischemic injury.  相似文献   

20.
Ischemia and simulated ischemic conditions cause intracellular Ca2+ overload in the myocardium. The relationship between ischemia injury and Ca2+ overload has not been fully characterized. The aim of the present study was to investigate the expression and characteristics of PLC isozymes in myocardial infarction-induced cardiac remodeling and heart failure. In normal rat heart tissue, PLC-delta1 (about 44 ng/mg of heart tissue) was most abundant isozymes compared to PLC-gamma1 (6.8 ng/mg) and PLC-beta1 (0.4 ng/mg). In ischemic heart and hypoxic neonatal cardiomyocytes, PLC-delta1, but not PLC-beta1 and PLC-gamma1, was selectively degraded, a response that could be inhibited by the calpain inhibitor, calpastatin, and by the caspase inhibitor, zVAD-fmk. Overexpression of the PLC-delta1 in hypoxic neonatal cardiomyocytes rescued intracellular Ca2+ overload by ischemic conditions. In the border zone and scar region of infarcted myocardium, and in hypoxic neonatal cardiomyocytes, the selective degradation of PLC-delta1 by the calcium sensitive proteases may play important roles in intracellular Ca2+ regulations under the ischemic conditions. It is suggested that PLC isozyme-changes may contribute to the alterations in calcium homeostasis in myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号