首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Jin M  Berrout J  Chen L  O'Neil RG 《Cell calcium》2012,51(2):131-139
The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca(2+)-activated K(+) channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca(2+)-activated K(+) channels, the small conductance SK3 (K(Ca)2.3) channel and large conductance BKα channel (K(Ca)1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K(+) channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca(2+) influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca(2+) influx on activation of both K(+) channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca(2+) influx would first activate the highly Ca(2+)-sensitive SK3 channel which, in turn, would lead to enhanced Ca(2+) influx and activation of the less Ca(2+)-sensitive BK channel.  相似文献   

3.
Stimulation of muscarinic receptors in the duodenal mucosa raises cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)), thereby regulating duodenal epithelial ion transport. However, little is known about the downstream molecular targets that account for this Ca(2+)-mediated biological action. Ca(2+)-activated K(+) (K(Ca)) channels are candidates, but the expression and function of duodenal K(Ca) channels are poorly understood. Therefore, we determined whether K(Ca) channels are expressed in the duodenal mucosa and investigated their involvement in Ca(2+)-mediated duodenal epithelial ion transport. Two selective blockers of intermediate-conductance Ca(2+)-activated K(+) (IK(Ca)) channels, clotrimazole (30 muM) and 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34; 10 muM), significantly inhibited carbachol (CCh)-induced duodenal short-circuit current (I(sc)) and duodenal mucosal bicarbonate secretion (DMBS) in mice but did not affect responses to forskolin and heat-stable enterotoxin of Escherichia coli. Tetraethylammonium, 4-aminopyridine, and BaCl(2) failed to inhibit CCh-induced I(sc) and DMBS. A-23187 (10 muM), a Ca(2+) ionophore, and 1-ethyl-2-benzimidazolinone (1-EBIO; 1 mM), a selective opener of K(Ca) channels, increased both I(sc) and DMBS. The effect of 1-EBIO was more pronounced with serosal than mucosal addition. Again, both clotrimazole and TRAM-34 significantly reduced A23187- or 1-EBIO-induced I(sc) and DMBS. Moreover, clotrimazole (20 mg/kg ip) significantly attenuated acid-stimulated DMBS of mice in vivo. Finally, the molecular identity of IK(Ca) channels was verified as KCNN4 (SK4) in freshly isolated murine duodenal mucosae by RT-PCR and Western blotting. Together, our results suggest that the IK(Ca) channel is one of the downstream molecular targets for [Ca(2+)](cyt) to mediate duodenal epithelial ion transport.  相似文献   

4.
Candidate amino acids involved in H+ gating of acid-sensing ion channel 1a   总被引:1,自引:0,他引:1  
Acid-sensing ion channels are ligand-gated cation channels, gated by extracellular H(+). H(+) is the simplest ligand possible, and whereas for larger ligands that gate ion channels complex binding sites in the three-dimensional structure of the proteins have to be assumed, H(+) could in principle gate a channel by titration of a single amino acid. Experimental evidence suggests a more complex situation, however. For example, it has been shown that extracellular Ca(2+) ions compete with H(+); probably Ca(2+) ions bound to the extracellular loop of ASICs stabilize the closed state of the channel and have to be displaced before the channel can open. In such a scheme, amino acids contributing to Ca(2+) binding would also be candidates contributing to H(+) gating. In this study we systematically screened more than 40 conserved, charged amino acids in the extracellular region of ASIC1a for a possible contribution to H(+) gating. We identified four amino acids where substitution strongly affects H(+) gating: Glu(63), His(72)/His(73), and Asp(78). These amino acids are highly conserved among H(+)-sensitive ASICs and are candidates for the "H(+) sensor" of ASICs.  相似文献   

5.
Small conductance calcium-activated potassium channels (SK, K(Ca)) are a family of voltage-independent K+ channels with a distinct physiology and pharmacology. The bee venom toxin apamin inhibits exclusively the three cloned SK channel subtypes (SK1, SK2, and SK3) with different affinity, highest for SK2, lowest for SK1, and intermediate for SK3 channels. The high selectivity of apamin made it a valuable tool to study the molecular makeup and function of native SK channels. Three amino acids located in the outer vestibule of the pore are of particular importance for the different apamin sensitivities of SK channels. Chimeric SK1 channels, enabling the homomeric expression of the rat SK1 (rSK1) subunit and containing the core domain (S1-S6) of rSK1, are apamin-insensitive. By contrast, channels formed by the human orthologue human SK1 (hSK1) are sensitive to apamin. This finding hinted at the involvement of regions beyond the pore as determinants of apamin sensitivity, because hSK1 and rSK1 have an identical amino acid sequence in the pore region. Here we investigated which parts of the channels outside the pore region are important for apamin sensitivity by constructing chimeras between apamin-insensitive and -sensitive SK channel subunits and by introducing point mutations. We demonstrate that a single amino acid situated in the extracellular loop between the transmembrane segments S3 and S4 has a major impact on apamin sensitivity. Our findings enabled us to convert the hSK1 channel into a channel that was as sensitive for apamin as SK2, the SK channel with the highest sensitivity.  相似文献   

6.
Small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK3/Kcnn3 and IK1/Kcnn4) are expressed in vascular endothelium. Their activities play important roles in regulating vascular tone through their modulation of intracellular concentration ([Ca(2+)](i)) required for the production of endothelium-derived vasoactive agents. Activation of endothelial IK1 or SK3 channels hyperpolarizes endothelial cell membrane potential, increases Ca(2+) influx, and leads to the release of vasoactive factors, thereby impacting blood pressure. To examine the distinct roles of IK1 and SK3 channels, we used electrophysiological recordings to investigate IK1 and SK3 channel trafficking in acutely dissociated endothelial cells from mouse aorta. The results show that SK3 channels undergo Ca(2+)-dependent cycling between the plasma membrane and intracellular organelles; disrupting Ca(2+)-dependent endothelial caveolae cycling abolishes SK3 channel trafficking. Moreover, transmitter-induced changes in SK3 channel activity and surface expression modulate endothelial membrane potential. In contrast, IK1 channels do not undergo rapid trafficking and their activity remains unchanged when either exo- or endocytosis is block. Thus modulation of SK3 surface expression may play an important role in regulating endothelial membrane potential in a Ca(2+)-dependent manner.  相似文献   

7.
The biophysical properties of small conductance Ca(2+)-activated K(+) (SK) channels are well suited to underlie afterhyperpolarizations (AHPs) shaping the firing patterns of a conspicuous number of central and peripheral neurons. We have identified a new scorpion toxin (tamapin) that binds to SK channels with high affinity and inhibits SK channel-mediated currents in pyramidal neurons of the hippocampus as well as in cell lines expressing distinct SK channel subunits. This toxin distinguished between the SK channels underlying the apamin-sensitive I(AHP) and the Ca(2+)-activated K(+) channels mediating the slow I(AHP) (sI(AHP)) in hippocampal neurons. Compared with related scorpion toxins, tamapin displayed a unique, remarkable selectivity for SK2 versus SK1 ( approximately 1750-fold) and SK3 ( approximately 70-fold) channels and is the most potent SK2 channel blocker characterized so far (IC(50) for SK2 channels = 24 pm). Tamapin will facilitate the characterization of the subunit composition of native SK channels and help determine their involvement in electrical and biochemical signaling.  相似文献   

8.
We elucidated the interaction of small-conductance Ca(2+)-activated K(+) (SK(Ca)) channels and L-type Ca(2+) channels in muscarinic receptor-mediated control of catecholamine secretion in the isolated perfused rat adrenal gland. The muscarinic agonist methacholine (10-300 microM) produced concentration-dependent increases in adrenal output of epinephrine and norepinephrine. The SK(Ca) channel blocker apamin (1 microM) enhanced the methacholine-induced catecholamine responses. The facilitatory effect of apamin on the methacholine-induced catecholamine responses was not observed during treatment with the L-type Ca(2+) channel blocker nifedipine (3 microM) or Ca(2+)-free solution. Nifedipine did not affect the methacholine-induced catecholamine responses, but it inhibited the responses during treatment with apamin. The L-type Ca(2+) channel activator Bay k 8644 (1 microM) enhanced the methacholine-induced catecholamine responses, whereas the enhancement of the methacholine-induced epinephrine and norepinephrine responses were prevented and attenuated by apamin, respectively. These results suggest that SK(Ca) channels are activated by muscarinic receptor stimulation, which inhibits the opening of L-type Ca(2+) channels and thereby attenuates adrenal catecholamine secretion.  相似文献   

9.
In most central neurons, action potentials are followed by an afterhyperpolarization (AHP) that controls firing pattern and excitability. The medium and slow components of the AHP have been ascribed to the activation of small conductance Ca(2+)-activated potassium (SK) channels. Cloned SK channels are heteromeric complexes of SK alpha-subunits and calmodulin. The channels are activated by Ca(2+) binding to calmodulin that induces conformational changes resulting in channel opening, and channel deactivation is the reverse process brought about by dissociation of Ca(2+) from calmodulin. Here we show that SK channel gating is effectively modulated by 1-ethyl-2-benzimidazolinone (EBIO). Application of EBIO to cloned SK channels shifts the Ca(2+) concentration-response relation into the lower nanomolar range and slows channel deactivation by almost 10-fold. In hippocampal CA1 neurons, EBIO increased both the medium and slow AHP, strongly reducing electrical activity. Moreover, EBIO suppressed the hyperexcitability induced by low Mg(2+) in cultured cortical neurons. These results underscore the importance of SK channels for shaping the electrical response patterns of central neurons and suggest that modulating SK channel gating is a potent mechanism for controlling excitability in the central nervous system.  相似文献   

10.
11.
We used a combination of electrophysiological and cell and molecular biological techniques to study the regulation and functional role of the intermediate conductance Ca(2+)-activated K(+) channel, hIK1, in HaCaT keratinocytes. When we incubated cells with the hIK1 opener, 1-ethyl-2-benzimidazolinone (1-EBIO), to investigate the cellular consequences of prolonged channel activity, an unexpected down-regulation of channels occurred within a few hours. The same effect was produced by the hIK1 openers chlorzoxazone and zoxazolamine and was also observed in a different cell line (C6 glioma cells). After 3 days of treatment with 1-EBIO, mRNA levels of hIK1 were substantially diminished and no channel activity was detected. Down-regulation of hIK1 was accompanied by a loss of mitogenic activity and a strong increase in cell size. After withdrawal of 1-EBIO, hIK1 mRNA and channel activity fully recovered and the cells resumed mitogenic activity. Our data present evidence for a novel feedback mechanism of hIK1 expression that appears to result from the paradoxical action of its pharmacological activator during prolonged application. Because the down-regulation of hIK1 bears immediate significance on the biological fate of keratinocytes, 1-EBIO and related compounds might emerge as potent tools to influence the proliferation of various non-excitable cells endowed with IK channels.  相似文献   

12.
Soh H  Park CS 《Biophysical journal》2002,83(5):2528-2538
In our previous study, we proposed that the inwardly rectifying current-voltage (I-V) relationship of small-conductance Ca(2+)-activated K(+) channels (SK(Ca) channels) is the result of voltage-dependent blockade of K(+) currents by intracellular divalent cations. We expressed a cloned SK(Ca) channel, rSK2, in Xenopus oocytes and further characterized the nature of the divalent cation-binding site by electrophysiological means. Using site-directed substitution of hydrophilic residues in K(+)-conducting pathway and subsequent functional analysis of mutations, we identified an amino acid residue, Ser-359, in the pore-forming region of rSK2 critical for the strong rectification of the I-V relationship. This residue interacts directly with intracellular divalent cations and determines the ionic selectivity. Therefore, we confirmed our proposition by localizing the divalent cation-binding site within the conduction pathway of the SK(Ca) channel. Because the Ser residue unique for the subfamily of SK(Ca) channels is likely to locate closely to the selectivity filter of the channels, it may also contribute to other permeation characteristics of SK(Ca) channels.  相似文献   

13.
Small conductance Ca(2+)-activated potassium (SK) channels underlie the afterhyperpolarization that follows the action potential in many types of central neurons. SK channels are voltage-independent and gated solely by intracellular Ca(2+) in the submicromolar range. This high affinity for Ca(2+) results from Ca(2+)-independent association of the SK alpha-subunit with calmodulin (CaM), a property unique among the large family of potassium channels. Here we report the solution structure of the calmodulin binding domain (CaMBD, residues 396-487 in rat SK2) of SK channels using NMR spectroscopy. The CaMBD exhibits a helical region between residues 423-437, whereas the rest of the molecule lacks stable overall folding. Disruption of the helical domain abolishes constitutive association of CaMBD with Ca(2+)-free CaM, and results in SK channels that are no longer gated by Ca(2+). The results show that the Ca(2+)-independent CaM-CaMBD interaction, which is crucial for channel function, is at least in part determined by a region different in sequence and structure from other CaM-interacting proteins.  相似文献   

14.
SK channels are Ca2+-activated K+ channels that underlie after hyperpolarizing (AHP) currents and contribute to the shaping of the firing patterns and regulation of Ca2+ influx in a variety of neurons. The elucidation of SK channel function has recently benefited from the discovery of SK channel enhancers, the prototype of which is 1-EBIO. 1-EBIO exerts profound effects on neuronal excitability but displays a low potency and limited selectivity. This study reports the effects of DCEBIO, an intermediate conductance Ca2+-activated K+ channel modulator, and the effects of the recently identified potent SK channel enhancer NS309 on recombinant SK2 channels, neuronal apamin-sensitive AHP currents, and the excitability of CA1 neurons. NS309 and DCEBIO increased the amplitude and duration of the apamin-sensitive afterhyperpolarizing current without affecting the slow afterhyperpolarizing current in contrast to 1-EBIO. The potentiation by DCEBIO and NS309 was reversed by SK channel blockers. In current clamp experiments, NS309 enhanced the medium afterhyperpolarization (but not the slow afterhyperpolarization sAHP) and profoundly affected excitability by facilitating spike frequency adaptation in a frequency-independent manner. The potent and specific effect of NS309 on the excitability of CA1 pyramidal neurons makes this compound an ideal tool to assess the role of SK channels as possible targets for the treatment of disorders linked to neuronal hyperexcitability.  相似文献   

15.
Throughout the CNS, small conductance Ca(2+)-activated potassium (SK) channels modulate firing frequency and neuronal excitability. We have identified a novel, shorter isoform of standard SK2 (SK2-std) in mouse brain which we named SK2-sh. SK2-sh is alternatively spliced at exon 3 and therefore lacks 140 amino acids, which include transmembrane domains S3, S4 and S5, compared with SK2-std. Western blot analysis of mouse hippocampal tissue revealed a 47 kDa protein product as predicted for SK2-sh along with a 64 kDa band representing the standard SK2 isoform. Electrophysiological recordings from transiently expressed SK2-sh revealed no functional channel activity or interaction with SK2-std. With the help of real-time PCR, we found significantly higher expression levels of SK2-sh mRNA in cortical tissue from AD cases when compared with age-matched controls. A similar increase in SK2-sh expression was induced in cortical neurons from mice by cytokine exposure. Substantial clinical evidence suggests that excess cytokines are centrally involved in the pathogenesis of Alzheimer's disease. Thus, SK2-sh as a downstream target of cytokines, provide a promising target for additional investigation regarding potential therapeutic intervention.  相似文献   

16.
It has been suggested that the large conductance Ca(2)+-activated K(+) channel contains one or more domains known as regulators of K(+) conductance (RCK) in its cytosolic C terminus. Here, we show that the second RCK domain (RCK2) is functionally important and that it forms a heterodimer with RCK1 via a hydrophobic interface. Mutant channels lacking RCK2 are nonfunctional despite their tetramerization and surface expression. The hydrophobic residues that are expected to form an interface between RCK1 and RCK2, based on the crystal structure of the bacterial MthK channel, are well conserved, and the interactions of these residues were confirmed by mutant cycle analysis. The hydrophobic interaction appears to be critical for the Ca(2+)-dependent gating of the large conductance Ca(2+)-activated K(+) channel.  相似文献   

17.
18.
Li Z  Lu J  Xu P  Xie X  Chen L  Xu T 《The Journal of biological chemistry》2007,282(40):29448-29456
STIM1 and Orai1 are essential components of Ca(2+) release-activated Ca(2+) channels (CRACs). After endoplasmic reticulum Ca(2+) store depletion, STIM1 in the endoplasmic reticulum aggregates and migrates toward the cell periphery to co-localize with Orai1 on the opposing plasma membrane. Little is known about the roles of different domains of STIM1 and Orai1 in protein clustering, migration, interaction, and, ultimately, opening CRAC channels. Here we demonstrate that the coiled-coil domain in the C terminus of STIM1 is crucial for its aggregation. Amino acids 425-671 of STIM1, which contain a serine-proline-rich region, are important for the correct targeting of the STIM1 cluster to the cell periphery after calcium store depletion. The polycationic region in the C-terminal tail of STIM1 also helps STIM1 targeting but is not essential for CRAC channel activation. The cytoplasmic C terminus but not the N terminus of Orai1 is required for its interaction with STIM1. We further identify a highly conserved region in the N terminus of Orai1 (amino acids 74-90) that is necessary for CRAC channel opening. Finally, we show that the transmembrane domain of Orai1 participates in Orai1-Orai1 interactions.  相似文献   

19.
Electrophysiological studies of H441 human distal airway epithelial cells showed that thapsigargin caused a Ca(2+)-dependent increase in membrane conductance (G(Tot)) and hyperpolarization of membrane potential (V(m)). These effects reflected a rapid rise in cellular K(+) conductance (G(K)) and a slow fall in amiloride-sensitive Na(+) conductance (G(Na)). The increase in G(Tot) was antagonized by Ba(2+), a nonselective K(+) channel blocker, and abolished by clotrimazole, a KCNN4 inhibitor, but unaffected by other selective K(+) channel blockers. Moreover, 1-ethyl-2-benzimidazolinone (1-EBIO), which is known to activate KCNN4, increased G(K) with no effect on G(Na). RT-PCR-based analyses confirmed expression of mRNA encoding KCNN4 and suggested that two related K(+) channels (KCNN1 and KCNMA1) were absent. Subsequent studies showed that 1-EBIO stimulates Na(+) transport in polarized monolayers without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)), suggesting that the activity of KCNN4 might influence the rate of Na(+) absorption by contributing to G(K). Transient expression of KCNN4 cloned from H441 cells conferred a Ca(2+)- and 1-EBIO-sensitive K(+) conductance on Chinese hamster ovary cells, but this channel was inactive when [Ca(2+)](i) was <0.2 microM. Subsequent studies of amiloride-treated H441 cells showed that clotrimazole had no effect on V(m) despite clear depolarizations in response to increased extracellular K(+) concentration ([K(+)](o)). These findings thus indicate that KCNN4 does not contribute to V(m) in unstimulated cells. The present data thus establish that H441 cells express KCNN4 and highlight the importance of G(K) to the control of Na(+) absorption, but, because KCNN4 is quiescent in resting cells, this channel cannot contribute to resting G(K) or influence basal Na(+) absorption.  相似文献   

20.
Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration. The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels and precipitated with antibodies against alpha(1C) and alpha(1D) L-type Ca(2+) channels. To confirm the specificity of the interaction, precipitation experiments were carried out also in reverse order. Also, additive precipitation was performed because alpha(1C) and alpha(1D) L-type Ca(2+) channels always refer to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号