首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red Blood Cell Damage by Shear Stress   总被引:16,自引:4,他引:12       下载免费PDF全文
A series of careful studies has been made on blood damage in a rotational viscometer. Specific attention has been focused on the effects of solid surface interaction, centrifugal force, air interface interaction, mixing of sheared and unsheared layers, cell-cell interaction, and viscous heating. The results show that there is a threshold shear stress, 1500 dynes/cm2, above which extensive cell damage is directly due to shear stress, and the various secondary effects listed above are negligible. By analysis of these results and those of prior workers it is shown that the exposure time-shear stress plane is divided into two distinct regimes. In the regime of relatively low stresses and exposure times there is relatively little damage, and the damage is dominated by solid surface interaction effects. In the other regime, at high stresses and exposure times, stress effects alone dominate and very high rates of hemolysis occur. The experimental findings of all prior workers are shown to be consistent when interpreted in this way.  相似文献   

2.
Recently, it has been discovered that apoptosis of anucleate platelets can be induced by chemical agonists. Other studies demonstrated that mechanical forces (shear stresses) stimulate platelet activation and signaling in the absence of exogenous chemical stimuli. We analyzed whether shear stresses can trigger platelet apoptosis, a question that has not yet been studied. Using a cone-and-plate viscometer, we exposed human platelet-rich plasma to different shear stresses, ranging from physiologic arterial and arteriole levels (10-44 dyn/cm2) to pathologic high levels (117-388 dyn/cm2) occurring in stenotic vessels. We found that pathologic shear stresses induce not only platelet activation (P-selectin upregulation and GPIbalpha downregulation) but also trigger apoptosis events, including mitochondrial transmembrane potential depolarization, caspase 3 activation, phosphatidylserine exposure, and platelet shrinkage and fragmentation, whereas physiological shear stresses are not effective.This novel finding suggests that shear-induced platelet apoptosis can be mediated by mechanoreceptors, does not require nuclear participation, and may affect platelet clearance.  相似文献   

3.
The purpose of this study was to measure stresses associated with turbulence (Reynolds stresses), in the region of a 29-mm-dia porcine bioprosthetic valve (Hancock, Model 242). Studies were performed in an in vitro pulse duplicating system with the valve mounted in the aortic position. The Reynolds stresses were calculated from velocities obtained with a two channel laser Doppler anemometer. The largest Reynolds shear stress and normal stress occurred at the highest stroke volume used (80 mL). Averaged over ejection they were 38 dynes/cm2 and 380 dynes/cm2, respectively. The maximal instantaneous Reynolds shear stress was 2500 dynes/cm2 and the maximal instantaneous Reynolds normal stress was 6800 dynes/cm2. Stresses of these magnitudes are in the range reported to damage platelets.  相似文献   

4.
BACKGROUND: Microparticles released from platelets may play a role in the normal hemostatic response to vascular injury, because they exhibit prothrombinase activity. Microparticles are generated by high shear stress and may be formed in diseased small arteries and arterioles in various clinical settings. However, the surface composition of high shear-induced platelet microparticles is unknown. It was recently shown that some cytokines modulate platelet activation. However, no reports are available concerning the effect of cytokines on high shear-induced platelet aggregation (SIPA) microparticle generation. MATERIALS AND METHODS: Measurement of SIPA was performed with a cone-plate viscometer. The conformational characteristics of high shear (108 dynes/cm(2))-induced platelet microparticles were analyzed by flow cytometry and confocal laser scanning microscopy. Effects of cytokines for high SIPA microparticle generation were also analyzed using flow cytometry. RESULTS: The overall pattern of monoclonal antibody binding in high shear-induced microparticles was almost the same as that in activated platelets under high shear stress. Microparticles exhibited markedly increased Annexin V binding. In fluorescent confocal images, small and fine regions of fluorescence (microparticles) were recognized separate from platelet fluorescence. Thrombopoietin not only induced platelet activation, as demonstrated by CD62P expression, but also increased the number of microparticles. Erythropoietin and interleukin-6 enhanced only microparticle generation. CONCLUSIONS: These results suggest that microparticles possessing procoagulant activity are released by platelet activation when levels of certain cytokines increase under high shear stress in various clinical settings.  相似文献   

5.
Experimental investigation of the rheological activation of blood platelets   总被引:1,自引:0,他引:1  
In order to define various aspects of platelet rheological activation, samples of whole blood and platelet-rich plasma (PRP) from the same donors were subjected for 5 min to shear rates increasing from 10 to 10000 sec-1 (shear stresses from 10(-2) to 30 Pa approximatively) in a Couette type viscometer. The following parameters were measured: erythrocyte hemolysis; lactic dehydrogenase activity; plasma B-Thromboglobulin (B-TG); adenine nucleotides, and platelet photometric aggregation. The experimental results reveal that: In whole blood, hemolysis only reached at maximum 2% of the total hemolysis. Plasma LDH activity increased regularly beyond 500 sec-1, in close correlation with B-TG plasma concentration. In contrast, ADP and ATP levels remained stable up to 1000 sec-1 then increased slowly. In PRP, the LDH, ADP and ATP levels remain practically stable up to shear rates around 5000 sec-1. In contrast, B-TG appeared to be released in plasma at shear rate values of 3000 sec-1 and its progression is only correlated with the other parameters, when the platelet lysis occurred. Finally, a rapid and complete inhibition of platelet aggregation to ADP was observed from 5000 sec-1.  相似文献   

6.
In order to determine the response of fixed and nonfixed cells adherent to a solid substratum to shear stress, human fibroblasts were allowed to adhere and spread on either hydrophilic glass or hydrophobic Fluoroethylene-propylene (FEP-Teflon) and fixed with glutaraldehyde. Then, the cells were exposed to an incrementally loaded shear stress in a parallel plate flow chamber up to shear stresses of about 500 dynes/cm2, followed by exposure to a liquid-air interface passage. The cellular detachment was compared with the one of nonfixed cells. In case of fixed cells, 50% of the adhering cells detached from FEP-Teflon at a shear stress of 350 dynes/cm2, whereas 50% of the adhering, nonfixed cells detached already at a shear stress of 20 dynes/cm2. No fixed cells detached from glass for shear stresses up to at least 500 dynes/cm2. More than 50% of the nonfixed cells were detached from glass at a shear stress of 350 dynes/cm2. Furthermore, the shape and morphology of fixed cells did not change during the incrementally loaded flow, in contrast to the ones of nonfixed cells, which clearly rounded up prior to detachment.  相似文献   

7.
Circulating blood platelets regulate the initial phase of the hemostatic response through adhesive and aggregatory events and by providing the necessary procoagulant surface for prothrombinase complex assembly and thrombin generation. The signaling pathway(s) that regulate platelet procoagulant activity are largely unknown, although they are distinct from platelet aggregatory signals linked to fibrinogen ligation to the conformationally active alpha(IIB)beta(3) integrin. We describe a novel intracellular signaling mechanism involving platelet IQGAP1 that specifically regulates the development of platelet procoagulant activity under conditions of mechanical shear stress. Murine platelets that are deficient in IQGAP1 demonstrate increased prothrombinase activity compared with wild-type littermate controls when activated by a physiological shear stress of 16 dynes/cm(2) (shear rates of 1600 s(-1)) (p < 0.0001), corresponding to approximately 2.5 times the normal shear stress, or approximately 40% degree of stenosis in coronary arteries. The exaggerated prothrombinase activity is not associated with enhanced platelet microvesiculation (cytoskeletal proteolysis) and occurs independently of the intracellular calcium release, [Ca(2+)](i), but it is specifically coupled to the alpha-granule exocytic pathway without concomitant effects on aminophospholipid exposure. These observations identify platelet IQGAP1 as an important modulator of normal hemostasis and as an appropriate pharmacological target for control of platelet procoagulant function.  相似文献   

8.
Described is a special purpose cone-plate viscometer that is capable of acceleration or deceleration through a step change in speed in less than 0.7s. The speed of the rotating cone is controlled by a microcomputer which can be programmed to generate speed vs time ramp functions of variable slope. Prior calibration of motor power required to shear Newtonian fluids of known viscosity at various speeds provides the basis for determination of apparent suspension viscosity and enables the viscometer automatically to compensate for changing sample viscosity during shear. The viscometer was used to carry out a series of preliminary studies in which platelet-rich plasma (PRP) was subjected to continuous and pulsatile shear stress at 37 degrees C. Shear-induced platelet aggregation (SIPAG) was significantly greater in response to pulsatile versus continuous shearing except at the lowest applied stress (10 dyn/cm2). Increases ranged from about 40 percent at a stress amplitude of 25 dyn/cm2 to nearly 55 percent at dyn/cm2. This increasing trend with stress amplitude might be interpreted as a positive correlation between SIPAG and the loading rate. Dense granule release, as indicated by serotonin release, was dependent on both stress amplitude and number of pulses even at the higher stress where SIPAG was independent of pulse number.  相似文献   

9.
《Biorheology》1995,32(1):73-93
The objective of this work was to evaluate quantitatively the effects of flow on platelet reactions using a flow cytometric technique. Whole blood was exposed to well defined, laminar shear stress in a cone-and-plate viscometer in the absence of added agonists. Blood specimens were fixed with formaldehyde and incubated with two monoclonal antibodies. Antibody 6D1, specific for platelet membrane glycoprotein Ib (GPIb), was used to identify and enumerate platelets and platelet aggregates on the basis of their characteristic forward scatter and 6D1-FITC fluorescence profiles. Anti-CD62 antibody, specific for the granule membrane protein-140 (GMP-140), was used to measure platelet activation. Results showed platelet aggregation increasing with increasing shear stress with marked increase in this response for a pathophysiological stress level of 140 dyn/cm2 and higher. This stress level also was the apparent threshold for formation of large platelet aggregates (“large” refers to particles larger than 10 μm in equivalent sphere diameter). These platelet responses to shear stress were insensitive to aspirin, but strongly inhibited by agents that elevate platelet cyclic adenosine monophosphate (cAMP) levels. Moreover, pre-incubation of whole blood with monoclonal antibodies that inhibit von Willebrand factor binding to GPIb or von Willebrand factor and fibrinogen binding to GPIIb/IIIa inhibited platelet aggregation. Aggregation induced by shear at 37° C was less in extent than at 23° C. At physiological shear stresses, whole blood was more susceptible to shear-induced platelet aggregation than platelet-rich plasma. This study reaffirms that flow cytometric methods have several important advantages in studies of shear effects on platelets, and extends the methodology to whole blood unaltered by cell separation methods.  相似文献   

10.
《Biorheology》1996,33(3):209-229
Elevated shear stress levels in pathologically stenosed vessels induce platelet activation and aggregation, and may play a role in the pathogenesis of arterial disease. Increased plasma catecholamine concentrations have also been implicated in the onset of acute coronary ischemic syndromes. This study was designed to examine the synergistic interaction of shear stress and epinephrine in the activation of platelets. Platelets (in PRP) sheared at 60 dyn/cm2 showed little or no aggregation unless pretreated with epinephrine. Pretreatment with 250 nM epinephrine followed by shear at 60 dyn/cm2 induced >60% platelet aggregation. The specific α2-adrenergic receptor antagonist yohimbine inhibited the synergistic aggregation, as did the ADP scavenging system phosphocreatine/creatine phosphokinase, indicating a three-way synergism with ADP. Chemical or monoclonal antibody blockade of von Willebrand factor (vWF) interactions with either platelet glycoprotein (Gp) Ib or Gp IIb/IIIa completely inhibited platelet aggregation induced by activating levels of shear stress alone. However, the combination of epinephrine and shear stress induced platelet aggregation that was blocked by 10E5, a monoclonal antibody that inhibits vWF binding to Gp IIb/IIIa, but not by aurin tricarboxylic acid or the monoclonal antibody 6D1, both of which inhibit vWF binding to Gp Ib. Synergistic platelet aggregation in response to epinephrine and shear stress was observed in washed platelets, platelet-rich plasma and whole blood in vitro, and also ex vivo following exercise to elevate endogenous levels of catecholamines. These results indicate that epinephrine synergizes with shear stress to induce platelet aggregation. This synergistic response requires functional Gp IIb/IIIa complexes, but is at least partially independent of vWF-Gp Ib interactions.  相似文献   

11.
The effects of prostaglandin E1 and prostaglandin G2, the prostaglandin endoperoxide, on platelet cyclic nucleotide concentrations were measured in platelet rich plasma (PRP), and in washed intact platelets. PGE1 was found to be a potent stimulator of platelet cAMP levels in both PRP and washed cells, and to inhibit aggregation in both systems. PGE1 did not change platelet cGMP levels in either PRP or washed cells. PGG2 which is a potent inducer of platelet aggregation, did not affect either the basal cAMP or the basal cGMP concentration. However, PGG2 was found to antagonize the increases in cAMP content in response to PGE1 in both PRP and washed platelets. The addition to our system of a cyclic nucleotide phosphodiesterase inhbitor, theophylline, did not change our findings. It is suggested that PGG2 may induce platelet aggregation by inhibiting PGE1-stimulated cAMP accumulation.  相似文献   

12.
Samples of CRL-8018 hybridoma cultures were subjected to well-defined laminar shear in a Couette viscometer. Exposure of the samples to increasing levels of shear stress (0–50 dynes cm−2 for 10 min) or times of exposure to shear (50 dynes cm−2 for 0–10 min) resulted in higher levels of cellular damage and death. Cell death in the viscometer was shown to exhibit trends similar to cell death caused by excessive agitation in spinner flasks, suggesting that viscometric shear can be used to model in a more reproducible way some of the fluid mechanical aspects of damage to cells caused by agitation. Cells cultured with low levels of fluid stresses (T-flask and slowly stirred spinner cultures) were more sensitive to shear than cells from rapidly agitated cultures. Also, cells from either the lag or stationary phases of batch cultures were more sensitive to mechanical damage than exponentially growing cells. Accumulation of ammonia and changes in pH of the batch culture can contribute to this increase in shear sensitivity.  相似文献   

13.
Staphylococcal enterotoxin (SE) B, a heat-stable toxin secreted by Staphylococcus aureus, has been implicated in the pathogenesis and exacerbation of several critical illnesses. It has been hypothesized that enterotoxins may interact with blood products such as platelets, in addition to T-lymphocytes and renal proximal tubule cells. The aim of this present study was to elucidate whether SEB directly alters human platelet function. Human platelet rich plasma (PRP) was pre-incubated with SEA, SEB, SEC or TSST-1, (at various concentrations and incubation times). After incubation, PRP was exposed to thrombin and aggregation was assessed. Incubation with all toxins tested resulted in decreased aggregation, specifically; exposure to 10μ g/ml of SEB for 30 min caused a 20% decrease and a 49% decrease at 90 min. A similar reduction in aggregation was seen in samples incubated with phorbol myristate acetate, a known stimulator of protein kinase C (PKC). Further, platelets exposed to SEB exhibited an increased plasma membrane PKC activity. Sphingosine, an inhibitor of PKC proved to block the SEB-induced reduction in aggregation. SEB effects on platelet metabolism were investigated using high performance liquid chromatography showing up to a 2-fold increase of active metabolites lipoxin A4 and 12-HETE, as compared to control. These data indicate that SEB is able to induce platelet dysfunction, and these effects may be mediated through activation of PKC.The views of the authors do not purport to reflect the position of the Department of the Army or the Department of Defense (Para, 4–3) AR360-5.  相似文献   

14.
Elevated turbulent shear stresses resulting from disturbed blood flow through prosthetic heart valves can cause damage to red blood cells and platelets. The purpose of this study was to measure the turbulent shear stresses occurring downstream of aortic prosthetic valves during in-vitro pulsatile flow. By matching the indices of refraction of the blood analog fluid and model aorta, correlated, simultaneous two-component laser velocimeter measurements of the axial and radial velocity components were made immediately downstream of two aortic prosthetic valves. Velocity data were ensemble averaged over 200 or more cycles for a 15-ms window opened at peak systolic flow. The systolic duration for cardiac flows of 8.4 L/min was 200 ms. Ensemble-averaged total shear stress levels of 2820 dynes/cm2 and 2070 dynes/cm2 were found downstream of a trileaflet valve and a tilting disk valve, respectively. These shear stress levels decreased with axial distance downstream much faster for the tilting disk valve than for the trileaflet valve.  相似文献   

15.
The concentration profiles of adenosine diphosphate (ADP), thromboxane A2 (TxA2), thrombin, and von Willebrand factor (vWF) released extracellularly from the platelet granules or produced metabolically on the platelet membrane during thrombus growth, were estimated using finite element simulation of blood flow over model thrombi of various shapes and dimensions. The wall fluxes of these platelet-activating agents were estimated for each model thrombus at three different wall shear rates (100 s-1, 800 s-1, and 1,500 s-1), employing experimental data on thrombus growth rates and sizes. For that purpose, whole human blood was perfused in a parallel-plate flow chamber coated with type l fibrillar human collagen, and the kinetic data collected and analyzed by an EPl-fluorescence video microscopy system and a digital image processor. It was found that thrombin concentrations were large enough to cause irreversible platelet aggregation. Although heparin significantly accelerated thrombin inhibition by antithrombin lll, the remaining thrombin levels were still significantly above the minimum threshold required for irreversible platelet aggregation. While ADP concentrations were large enough to cause irreversible platelet aggregation at low shear rates and for small aggregate sizes, TxA2 concentrations were only sufficient to induce platelet shape change over the entire range of wall shear rates and thrombi dimensions studied. Our results also indicated that the local concentration of vWF multimers released from the platelet alpha-granules could be sufficient to modulate platelet aggregation at low and intermediate wall shear rates (less than 1,000 s-1). The sizes of standing vortices formed adjacent to a growing aggregate and the embolizing stresses and the torque, acting at the aggregate surface, were also estimated in this simulation. It was found that standing vortices developed on both sides of the thrombus even at low wall shear rates. Their sizes increased with thrombus size and wall shear rate, and were largely dependent upon thrombus geometry. The experimental observation that platelet aggregation occurred predominantly in the spaces between adjacent thrombi, confirmed the numerical prediction that those standing vortices are regions of reduced fluid velocities and high concentrations of platelet-activating substances, capable of trapping and stimulating platelets for aggregation. The average shear stress and normal stress, as well as the torque, acting to detach the thrombus, increased with increasing wall shear rate. Both stresses were found to be nearly independent of thrombus size and only weekly dependent upon thrombus geometry. Although both stresses had similar values at low wall shear rates, the average shear stress became the predominant embolizing stress at high wall shear rates.  相似文献   

16.
EL-4 tumor cells were assayed in vitro for their ability to aggregate two kinds of platelets. An inhibition study showed that the EL-4 tumor cell can induce platelet aggregation by at least two different mechanisms. One, mediated by thrombin, was dominant with rabbit platelets because hirudin, which specifically inhibits thrombin, considerably suppressed the rabbit platelet aggregation induced by EL-4 tumor cells. In contrast, EL-4 cells induced the aggregation of human platelets even in citrated PRP. It is the apyrase-sensitive pathway that is believed to work in human platelets. The human platelet responses to EL-4 tumor cells clearly differed from those of rabbit platelets in terms of inhibition by hirudin and apyrase and of reactivity in citrated PRP. Both phospholipase A2 and dibutyryl cAMP strongly inhibited EL-4 tumor cell-induced platelet aggregation in both rabbit and human platelets. These two compounds may block a vital step in platelet aggregation that is elicited by the EL-4 tumor cells. Our results show that human platelet response to tumor cells is not necessarily deducible from experimental data obtained with animal platelets.  相似文献   

17.
Endothelial-derived proteoglycans are important regulators of the coagulation-pathway in vivo and our primary objective of this study was to determine whether chronic shear stress affected the synthesis, release, and activity of proteoglycans from bovine aortic endothelial cells (BAEC). BAEC were cultured under shear and proteoglycans were purified from BAEC conditioned media and analyzed using both anionic exchange and size exclusion chromatography. The overall amount of proteoglycans produced per cell was significantly greater for the high shear-treated samples compared to the low shear-treated samples indicating that the shear magnitude did impact cell responsiveness. While overall size and composition of the proteoglycans and glycosaminoglycan (GAG) side chains were not altered by shear, the relative proportion of the high and low molecular weight species was inversely related to shear and differed significantly from that found under static tissue culture conditions. Moreover, a unique proteoglycan peak was identified from low shear stress (5 +/- 2 dynes/cm(2)) conditioned media when compared to high shear conditions (23 +/- 8 dynes/cm(2)) via anionic exchange chromatography, suggesting that subtle changes in the GAG structures may impact activity of these molecules. In order to characterize whether these changes impacted proteoglycan function, we studied the effects of shear specific proteoglycans on the inhibition of thrombin-induced human platelet aggregation as well as on platelet-fibrin clot dynamics. Proteoglycans from high shear-treated samples were less effective inhibitors of both platelet aggregation and blood coagulation inhibition than proteoglycans from low shear-treated samples and both were less effective than proteoglycans isolated from static tissue culture samples. However, due to changes in the overall proteoglycan synthesis and release rate, the high and low shear-treated sample had essentially identical effects on these activities, suggesting that the cells were able to compensate for stress-induced proteoglycan changes. Our data suggests that shear stress, by altering proteoglycan synthesis and fine structure, may play a role in maintaining vascular hemodynamics and hemostasis.  相似文献   

18.
"Shear induced platelet activation"--a critical reappraisal   总被引:1,自引:0,他引:1  
Platelets were found to be stimulated by high shear exposure for 5 minutes. Using a new technique, shear stresses up to 255 N/m2, acting for pathophysiological relevant intervals of milliseconds did not elicit active release of beta-TG, beyond the amount explained by LDH-monitored passive lysis. Neither the plasma level of ionized calcium (citrate vs heparin anticoagulation), nor a potent platelet inhibiting agent like PgI2 (20 nM) did significantly alter platelet responses to short acting high shear stress. Ultrastructural signs of activation could largely be suppressed by adding ADP-scavengers. Direct "shear induced platelet activation" appears rather unlikely and mostly reducible to secondary biochemical activation by mediators, probably adenine nucleotides, from a small percentage of passively shear-destroyed platelets. The extent of this secondary activation is largely a matter of experimental conditions.  相似文献   

19.
In order to determine the response of fixed and nonfixed cells adherent to a solid substratum to shear stress, human fibroblasts were allowed to adhere and spread on either hydrophilic glass or hydrophobic Fluoroethylene-propylene (FEP-Teflon) and fixed with glutaraldehyde. Then, the cells were exposed to an incrementally loaded shear stress in a parallel plate flow chamber up to shear stresses of about 500 dynes/cm2, followed by exposure to a liquid-air interface passage. The cellular detachment was compared with the one of nonfixed cells. In case of fixed cells, 50% of the adhering cells detached from FEP-Teflon at a shear stress of 350 dynes/cm2, whereas 50% of the adhering, nonfixed cells detached already at a shear stress of 20 dynes/cm2. No fixed cells detached from glass for shear stresses up to at least 500 dynes/cm2. More than 50% of the nonfixed cells were detached from glass at a shear stress of 350 dynes/cm2. Furthermore, the shape and morphology of fixed cells did not change during the incrementally loaded flow, in contrast to the ones of nonfixed cells, which clearly rounded up prior to detachment.  相似文献   

20.
Complement activation may predispose to vascular injury and atherogenesis. The atheroprotective actions of unidirectional laminar shear stress led us to explore its influence on endothelial cell expression of complement inhibitory proteins CD59 and decay-accelerating factor. Human umbilical vein and aortic endothelial cells were exposed to laminar shear stress (12 dynes/cm(2)) or disturbed flow (+/- 5 dynes/cm(2) at 1Hz) in a parallel plate flow chamber. Laminar shear induced a flow rate-dependent increase in steady-state CD59 mRNA, reaching 4-fold at 12 dynes/cm(2). Following 24-48 h of laminar shear stress, cell surface expression of CD59 was up-regulated by 100%, whereas decay-accelerating factor expression was unchanged. The increase in CD59 following laminar shear was functionally significant, reducing C9 deposition and complement-mediated lysis of flow-conditioned endothelial cells by 50%. Although CD59 induction was independent of PI3-K, ERK1/2 and nitric oxide, an RNA interference approach demonstrated dependence upon an ERK5/KLF2 signaling pathway. In contrast to laminar shear stress, disturbed flow failed to induce endothelial cell CD59 protein expression. Likewise, CD59 expression on vascular endothelium was significantly higher in atheroresistant regions of the murine aorta exposed to unidirectional laminar shear stress, when compared with atheroprone areas exposed to disturbed flow. We propose that up-regulation of CD59 via ERK5/KLF2 activation leads to endothelial resistance to complement-mediated injury and protects from atherogenesis in regions of laminar shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号