首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
According to classic theory, species'' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator–prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.  相似文献   

4.
Andrew M. Turner 《Oikos》2004,104(3):561-569
A number of studies show that predators can depress prey growth rates by inducing reductions in foraging activity, but the size of this non-lethal effect is quite variable. Here I investigate how prey density and resource productivity may alter the extent to which predators depress the growth rates of their prey. Theory predicts that when resources are overgrazed, an increase in predation risk will have little net effect on individual food intake because the decline in foraging effort will be offset by an increase in resource level. Thus, the non-lethal effects of predators on prey growth rates should depend upon prey density and resource productivity in a predictable manner, with the growth penalty imposed by predators being strongest when resources are undergrazed and weakest when resources are overgrazed. I tested this hypothesis by manipulating predation risk, prey density, and nutrient additions in a mesocosm experiment with the pulmonate snail Helisoma trivolvis . Refuge use by snails was 45% higher in the presence of caged crayfish than in their absence. Snail growth rates were reduced, on average, by 24% in the presence of caged crayfish. However, the magnitude of the growth penalty exacted by crayfish depended on snail density and nutrient additions. When snails were stocked at high density and nutrient additions were low, growth suppression was just 2.6%. At the other extreme, when snails were at low density and nutrient additions were high, growth suppression was 44.6%. Thus, the non-lethal effects of predators on prey growth depend on environmental context, illustrating an important link between individual traits and system-level properties.  相似文献   

5.
Predator feeding behavior and digestion regulate the flow of nutrients through ecosystems by determining the fate of prey nutrients. Most predators feed on a diversity of prey items, which differ widely in traits including their nutrient content. Yet, relatively little is known of the mechanisms through which variation in prey nutrient content affects the form by which nutrients are deposited into the environment. The overall goal of this study was to test how variation in the nutrient content of prey affected the fate of nutrients following predation by an arthropod carnivore, the Carolina wolf spider Hogna carolinensis. We manipulated the macronutrient content of prey by varying the diet on which crickets were fed to produce prey treatments that differed in lipid and protein content. Nutrients were measured as both macronutrients and elements in prey and elements in excreta. We found that there was no effect of diet treatment on the amounts of elements or macronutrients in prey carcasses and excreta despite significant variation in the nutrient content of those prey. This is in contrast to studies of some aquatic systems where mass balance by consumers results in variation in excreta content depending on the nutrient content of food. Wolf spiders assimilated the majority of prey nutrients and deposited relatively small and similar amounts of nutrients following feeding. Hence, while prey can vary widely in nutrient content, our findings suggest that this variation has little effect on the amounts of nutrients deposited by predators.  相似文献   

6.
Prey quality can have large impacts on the survival, growth and behavior of predators. A number of studies have examined how different species of prey vary in quality. However, far less is known about intraspecific variation in the quality of prey for predators and even less about what nutrients are extracted from prey by predators. We examined how the sex, feeding level and developmental status of prey affected the quantities of nutrients present in prey bodies and the quantities of nutrients that could be extracted from prey by spiders. Female and well‐fed prey were larger and had more nutrients than male and food‐limited prey, respectively. After taking into account differences in prey size, spiders extracted relatively more lipid and less protein from female and well‐fed prey than from male and food‐limited prey, respectively. Mealworms were of higher quality than adult mealworm beetles; spiders were able to extract more lipid, protein and other nutrients from larvae than adults. While lipid present in prey was a good predictor of lipid consumed, protein present in prey was not a reliable predictor of protein consumed. The variation in prey quality that we observed within a single species of prey (i.e. well‐fed vs food‐limited crickets) was as large as variation in quality among the three species of prey used in these experiments. Intraspecific variation in prey quality may be an important factor affecting predatory arthropods, especially in habitats or at times of year when one species of prey is abundant. Further studies are needed to examine the consequences of intraspecific variation in prey quality on the life history and behavior of predators.  相似文献   

7.
Nutritional ecological theory predicts that predators should adjust prey capture and consumption rates depending on the prey's nutritional composition. This would affect the predator's functional response, at least at high prey densities, i.e. near predator satiation. Using a simple fruitfly-wolf spider laboratory system in Petri dishes, we found that functional responses changed from day to day over a 7 day period. After 1 to 2 days of feeding, dome-shaped functional responses (i.e. reduced predation at highest prey densities) appeared in spiders fed nutritionally imbalanced prey, compared with steadily increasing or asymptotic functional responses with nutritionally near-optimal prey. Later again (days 5-7), the difference disappeared as the level of the functional response was reduced in both treatments. Experiments with adult females in spring and subadult spiders in autumn revealed opposite patterns: a dome-shaped response with high-lipid prey for reproductive females, for which protein-rich prey are optimal, and a dome-shaped (or simply reduced) response with high-protein prey for pre-winter subadults, for which high-lipid flies are the optimal prey. Our results have implications for predation theory and models of biological control that have, so far, neglected nutritional aspects; in particular, the dynamic nutritional state of the predators should be incorporated.  相似文献   

8.
Predators influence prey populations both by consuming individual prey, and by inducing changes in prey behaviour that limit reproduction and survival. Because prey trade-off predation risk for forageing gains, the magnitude of predators' non-consumptive effects should depend on resource availability. Studies of non-consumptive effects generally adopt either of two strategies: (i) maintaining a static ration of the prey's resources; and (ii) using resource populations that vary dynamically in response to prey behaviour. Contrasting these experimental designs using meta-analysis, we evaluated whether resource dynamics influence the magnitude of non-consumptive effects on prey growth, survival, fecundity, population density, forageing rate and habitat use. Predators had a more negative effect on prey demography in dynamic- vs. static-resource experiments. Our results highlight the importance of resource dynamics in mediating the magnitude of non-consumptive effects of predators on prey, and illustrate the often-unintended impacts of experimental design on estimates of effect size in ecological interactions.  相似文献   

9.
The mere presence of predators (i.e., predation risk) can alter consumer physiology by restricting food intake and inducing stress, which can ultimately affect prey‐mediated ecosystem processes such as nutrient cycling. However, many environmental factors, including conspecific density, can mediate the perception of risk by prey. Prey conspecific density has been defined as a fundamental feature that modulates perceived risk. In this study, we tested the effects of predation risk on prey nutrient stoichiometry (body and excretion). Using a constant predation risk, we also tested the effects of varying conspecific densities on prey responses to predation risk. To answer these questions, we conducted a mesocosm experiment using caged predators (Belostoma sp.), and small bullfrog tadpoles (Lithobates catesbeianus) as prey. We found that L. catesbeianus tadpoles adjust their body nutrient stoichiometry in response to predation risk, which is affected by conspecific density. We also found that the prey exhibited strong morphological responses to predation risk (i.e., an increase in tail muscle mass), which were positively correlated to body nitrogen content. Thus, we pose the notion that in risky situations, adaptive phenotypic responses rather than behavioral ones might partially explain why prey might have a higher nitrogen content under predation risk. In addition, the interactive roles of conspecific density and predation risk, which might result in reduced perceived risk and physiological restrictions in prey, also affected how prey stoichiometry responded to the fear of predation.  相似文献   

10.
Over a number of decades the process of prey choice has been investigated using fishes as model predators. Using fishes for the model has allowed the proximate factors that determine how a mobile predator finds and chooses to eat the prey encountered within a variable 3‐D environment to be estimated. During prey choice a number of constraints exist, in particular most fish predators will eat their prey whole thus their jaws and gut create functional limitations once a prey has been attacked. By considering the relationship between the size of the prey and the predator's feeding apparatus and feeding motivation this study explores the link between mechanistic studies and theoretical, optimal foraging based predictions. How the prediction of prey choices made by the fish following prey encounter can be reconciled with what is likely to be found in the fish's stomach is discussed. This study uses a progression of empirical examples to illustrate how the limits of functional constraints and prey choice at different stages of motivation to feed can be taken into account to improve predictions of predator prey choice.  相似文献   

11.
A specialist predator that has a specialized diet, prey‐specific prey‐capture behaviour and a preference for a particular type of prey may or may not be specialized metabolically. Previous studies have shown that jumping spiders of the genus Portia prey on other spiders using prey‐specific prey‐capture behaviour, prefer spiders as prey to insects and gain long‐term benefits in terms of higher survival and growth rates on spider diets than on insect diets. However, it is unclear whether there are substances uniquely present in spiders on which Portia depends, or, alternatively, spiders and insects all contain more or less the same nutrients but the relative amounts of these substances are such that Portia perform better on a spider diet. These questions are addressed by testing the hypothesis that prey specialization includes metabolic adaptations that allow Portia an enhanced nutrient extraction or nutrient utilization efficiency when feeding on spider prey compared with insect prey. Three groups of Portia quei Zabka are fed either their preferred spider prey or one of two types of flies (Drosophila melanogaster Meigen) that differ in nitrogen and lipid content. Portia quei shows a higher feeding rate of high‐protein flies than of high‐lipid flies and spiders but, after 5 days of feeding, there is no significant difference in growth between treatments, and the diets lead to significant changes in the macronutrient composition of P. quei as a result of variable extraction and utilization of the prey. The short‐term utilization of spider prey is similar to that of high‐lipid flies and both differ in several respects from the utilization of high‐protein flies. Thus, the short‐term nutrient utilization is better explained by prey macronutrient content than by whether the prey is a spider or not. The results suggest that spider prey may have a more optimal macronutrient composition for P. quei and that P. quei does not depend on spider‐specific substances.  相似文献   

12.
Animal population dynamics in open systems are affected not only by agents of mortality and the influence of species interactions on behavior and life histories, but also by dispersal and recruitment. We used an extensive data set to compare natural loss rates of two mayfly species that co-occur in high-elevation streams varying in predation risk, and experience different abiotic conditions during larval development. Our goals were to generate hypotheses relating predation to variation in prey population dynamics and to evaluate alternative mechanisms to explain such variation. While neither loss rates nor abundance of the species that develops during snowmelt (Baetis bicaudatus) varied systematically with fish, loss rates of the species that develops during baseflow (Baetis B) were higher in streams containing brook trout than streams without fish; and surprisingly, larvae of this species were most abundant in trout streams. This counter-intuitive pattern could not be explained by a trophic cascade, because densities of intermediate predators (stoneflies) did not differ between fish and fishless streams and predation by trout on stoneflies was negligible. A statistical model estimated that higher recruitment and accelerated development enables Baetis B to maintain larger populations in trout streams despite higher mortality from predation. Experimental estimates suggested that predation by trout potentially accounts for natural losses of Baetis B, but not Baetis bicaudatus. Predation by stoneflies on Baetis is negligible in fish streams, but could make an important contribution to observed losses of both species in fishless streams. Non-predatory sources of loss were higher for B. bicaudatus in trout streams, and for Baetis B in fishless streams. We conclude that predation alone cannot explain variation in population dynamics of either species; and the relative importance of predation is species- and environment-specific compared to non-predatory losses, such as other agents of mortality and non-consumptive effects of predators. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Influence of the bound nucleotide on the molecular dynamics of actin   总被引:1,自引:0,他引:1  
Rotational dynamics of actin spin-labelled with maleimide probes at the reactive thiol Cys-374 were studied. Replacement of the bound nucleotide by Br8ATP in G-actin and Br8ADP in F-actin causes significant increase of the rotational correlation time of the spin probe, indicating reduced motion in both G and F-actin. The orientation dependence of the electron paramagnetic resonance spectra in oriented F-actin filaments revealed an altered molecular order of the probe when the nucleotide was a Br-substituted one. The bound nucleotide affects the myosin S1 ATPase activation by actin; both Vmax and K(actin) decreased significantly when the bound nucleotide of actin was Br8ADP.  相似文献   

14.
When microbes are subjected to temporal changes in nutrient availability, growth rate and substrate affinity can contribute to competitive fitness and thereby affect microbial community structure. This hypothesis was tested using planktonic bacterial communities exposed to nutrient additions at 1-, 3-, 7-, or 14-day intervals. Growth rates after nutrient addition were inversely proportional to the pulse interval and declined from 0.5 h(-1) to 0.15 h(-1) as the pulse interval increased from 1 to 14 days. The dynamics of community structure were monitored by 16S rRNA gene PCR-denaturing gradient gel electrophoresis. At pulse intervals of more than 1 day, the community composition continued to change over 130 days. Although replicate systems exposed to the same pulse interval were physiologically similar, their community compositions could exhibit as much dissimilarity (Dice similarity coefficients of <0.5) as did systems operated at different intervals. Bacteria were cultivated from the systems to determine if the physiological characteristics of individual members were consistent with the measured performance of the systems. The isolates fell into three bacterial divisions, Bacteroidetes, Proteobacteria, and Actinobacteria. In agreement with community results, bacteria isolated from systems pulsed every day with nutrients had higher growth rates and ectoaminopeptidase specific activities than isolates from systems pulsed every 14 days. However, the latter isolates did not survive starvation longer than those provided with nutrients every day. The present study demonstrates the dynamic nature of microbial communities exposed to even simple and regular environmental discontinuities when a substantial pool of species that can catabolize the limiting substrate is present.  相似文献   

15.
16.
Traits affecting ecological interactions can evolve on the same time scale as population and community dynamics, creating the potential for feedbacks between evolutionary and ecological dynamics. Theory and experiments have shown in particular that rapid evolution of traits conferring defense against predation can radically change the qualitative dynamics of a predator–prey food chain. Here, we ask whether such dramatic effects are likely to be seen in more complex food webs having two predators rather than one, or whether the greater complexity of the ecological interactions will mask any potential impacts of rapid evolution. If one prey genotype can be well-defended against both predators, the dynamics are like those of a predator–prey food chain. But if defense traits are predator-specific and incompatible, so that each genotype is vulnerable to attack by at least one predator, then rapid evolution produces distinctive behaviors at the population level: population typically oscillate in ways very different from either the food chain or a two-predator food web without rapid prey evolution. When many prey genotypes coexist, chaotic dynamics become likely. The effects of rapid evolution can still be detected by analyzing relationships between prey abundance and predator population growth rates using methods from functional data analysis.  相似文献   

17.
This work purports to analyze the influence of allochthonous nutrient input into consumer level in the ultimate dynamics of an omnivory food web, where consumption is dictated by non-switching and switching predators. Within this behavioral context, prey consumption structure is shown to have a markedly effect on food web dynamics under a gradient of allochthonous input and primary productivity. A striking feature is that in the non-switching model invasion of consumer and predator occurs sequentially in this order as density of carrying capacity increases, while in the switching model both predators and consumers are able to invade and persist irrespective of the considered carrying capacity levels.  相似文献   

18.
Predator control of ecosystem nutrient dynamics   总被引:1,自引:0,他引:1  
Predators are predominantly valued for their ability to control prey, as indicators of high levels of biodiversity and as tourism attractions. This view, however, is incomplete because it does not acknowledge that predators may play a significant role in the delivery of critical life‐support services such as ecosystem nutrient cycling. New research is beginning to show that predator effects on nutrient cycling are ubiquitous. These effects emerge from direct nutrient excretion, egestion or translocation within and across ecosystem boundaries after prey consumption, and from indirect effects mediated by predator interactions with prey. Depending on their behavioural ecology, predators can create heterogeneous or homogeneous nutrient distributions across natural landscapes. Because predator species are disproportionately vulnerable to elimination from ecosystems, we stand to lose much more from their disappearance than their simple charismatic attractiveness.  相似文献   

19.
20.
Foliar nutrient dynamics and nutrient use efficiency in Cornus florida   总被引:2,自引:0,他引:2  
Summary Growth rates and seasonal changes in foliar nitrogen, phosphorus, and calcium of Cornus florida L. (flowering dogwood) individuals were determined in three forest stands which differed in soil moisture and soil nutrient availability. Nutrient use efficiency of individual trees was measured by amount of leaf dry mass produced per unit nutrient invested, rates of nutrient resorption prior to litterfall, wood and leaf mass produced per unit nutrient turnover (=growth efficiency), projected uptake needs, and losses of nutrients to simulated throughfall leaching. Relative growth rates during this drought year, as determined by dimension analysis, were highest in the site with highest soil moisture, while 5-year average relative growth rates were highest in the most fertile site. Differences in nitrogen use efficiency were generally small, with the highest efficiencies in trees on the moistest site; in contrast, phosphorus use efficiency was consistently highest on the least fertile site. Foliar calcium levels increased throughout the year and calcium use efficiency was generally highest on the least fertile site. These data suggest that growth and nitrogen use efficiency were more strongly affected by differences in soil moisture than were phosphorus or calcium use, at least during this very dry year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号