首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

2.
Microbial mineralization of carbonate is a research subject widely studied in the past decades. The magnesium ions (Mg2+), present in water systems, are a key determinant in biomineralization process of carbonate and they are widely found in calcium-based biominerals as an accessory component. However, the crystallization mechanism and morphological change of carbonate polymorphs in the presence of Mg2+ ions has not been clarified sufficiently. In this report, a series of culture experiments were performed for 50 days using the Arthrobacter sp. strain MF-2 in a M2 culture medium using Mg/Ca molar ratios (R) of 0, 1.5, 3, 6, 9, and 12 in solution. And the roles of Mg2+ ions on the crystal growth and morphological change of biogenic carbonate were investigated. Experimental results show: (1) MF-2 could induce aragonite, high-Mg calcite, and Ca-dolomite formation in M2 culture media with different R values. The increased stability of amorphous calcium carbonate suggests Mg2+ ions inhibit carbonate crystallization. (2) The mineral morphologies were varied (rod-shaped, dumbbell-shaped, cauliflower-like, spherical, etc.) in the medium with R = 1.5, but they became simple (spherical and lamellar) in high Mg2+ concentrations (Mg > 0.15 M, R > 3). (3) The increased ionic strength of Mg2+ ions in the environment has an influence on the polymorphs and morphologies of carbonate formed by controlling the metabolism of strain MF-2 and the activity of carbonic anhydrase.  相似文献   

3.
The cationic responses of haemolymph, mantle collar, headfoot, gut + digestive diverticulum and ovotestis + albumin gland of three planorbids to cationic changes in the media are explored. Body organs exhibited cationic homeostasis, although attained with difficulty under very low Ca : Mg and Ca : Na ratios. Haemolymph imbalances were obtained at very low calcium concentrations and at very low Ca : Mg and Ca : Na ratios in the medium; this may be linked to competition for Ca2+ uptake sites in the epithelium by Mg2+ and possibly Na+ ions.Fecundity and shell growth in relation to calcium concentrations and to Ca : Mg and Ca : Na ratios are examined.Normal internal cationic levels, under optimal conditions, were obtained for each species. Significant interspecific differences for haemolymph sodium were found; magnesium levels were slightly higher in Biomphalaria spp. than in Helisoma trivolvis; potassium levels were all similar. Amounts of tissue calcium decreased as follows: Mantle collar head-foot ovotestis + albumin gland-gut + diverticulum. Tissue magnesium levels in the gut were low. H. trivolvis had highest tissue calcium and sodium; B. glabrata had highest tissue potassium.  相似文献   

4.
Summary Thirty-day old intact ryegrass plants (Lolium perenne) were exposed to solutions of Ca, Mg, or Ca+Mg. Each ion was present at 0.25 mM and each solution was labeled with an appropriate radioisotope (Ca45 or Mg28). Plants were harvested at various times over a 12-hour period and analyzed for incorporation of the radioisotopes and for the total quantities of Ca and Mg present. Uptake of the exogenous ions was calculated on the assumption that uptake of both carrier and isotopic species occurred in proportion to their concentrations in the ambient solution. Steady state rates of exogenous ion uptake by roots and translocation to shoots were observed for both ions during the 2–12 hour period. During this time the rate of exogenous Ca accumulation in the shoots substantially exceeded that in the roots, and the presence of ambient Mg had relatively little influence on either rate. However, ambient Mg did decrease the exogenous Ca taken up in the 0–2 hour period. The steady state rate of exogenous Mg accumulation in roots and shoots exceeded that of exogenous Ca, and the presence of ambient Ca suppressed both exogenous Mg rates about equally. Significant net accumulation of Ca occurred in the root tissue during the 2–12 hour period whereas with Mg there was little net accumulation. A constant rate of depletion of endogenous Mg, which was restricted by presence of ambient Ca, was observed. Evidence from the observed 2–12 hour y-intercept values for root accumulation of the two ions suggests the possibility of specific adsorption sites for Ca.Paper Number 4513 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, North Carolina. These investigations were supported in part by the U.S. Atomic Energy Commission, Grant No. AT-(40-1)-2410.Paper Number 4513 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, North Carolina. These investigations were supported in part by the U.S. Atomic Energy Commission, Grant No. AT-(40-1)-2410.  相似文献   

5.
Pyrolysin is an extracellular subtilase produced by the marine hyperthermophilic archaeon Pyrococcus furiosus. This enzyme functions at high temperatures in seawater, but little is known about the effects of metal ions on the properties of pyrolysin. Here, we report that the supplementation of Na+, Ca2+, or Mg2+ salts at concentrations similar to those in seawater destabilizes recombinant pyrolysin but leads to an increase in enzyme activity. The destabilizing effect of metal ions on pyrolysin appears to be related to the disturbance of surface electrostatic interactions of the enzyme. In addition, mutational analysis of two predicted high-affinity Ca2+-binding sites (Ca1 and Ca2) revealed that the binding of Ca2+ is important for the stabilization of this enzyme. Interestingly, Asn substitutions at residues Asp818 and Asp820 of the Ca2 site, which is located in the C-terminal extension of pyrolysin, resulted in improvements in both enzyme thermostability and activity without affecting Ca2+-binding affinity. These effects were most likely due to the elimination of unfavorable electrostatic repulsion at the Ca2 site. Together, these results suggest that metal ions play important roles in modulating the stability and activity of pyrolysin.  相似文献   

6.
Summary Calcium ions affect the gating of Ca currents. Surface charge is involved but to what extent is unknown. We have examined this, using isolated nerve cell bodies ofHelix aspersa and the combined microelectrode-suction pipette method for voltage-clamp and internal perfusion. We found that Ba and Sr currents produced by substitution of these ions for extracellular Ca ions are activated at less positive potentials than Ca currents. Mg ions do not permeate the Ca channel and changes in [Mg]0 produce shifts in the activation-potential curves that are comparable to the effects of changes in [Ba]0 or [Sr]0. Inactivation of Ba currents also occurs at less positive potentials. Perfusion intracellularly with EGTA reduced inactivation of Ca currents as a function of potential, but did not shift the inactivation-potential curve. Hence, Ca current-dependent inactivation which is blocked by intracellular EGTA probably does not involve a similar change of intracellular surface potential. The voltage shifts of activation and inactivation produced by extracellular divalent cations used singly or in mixtures can be described by the Gouy-Chapman theory for the diffuse double layer with binding (Gilbert & Ehrenstein, 1969; McLaughlin, Szabo & Eisenman, 1971). From the surface potential values and the Boltzman distribution, we have computed surface concentrations that predict the following experimental observations: 1) saturation of current-concentration relationships when surface potential is changing maximally; 2) the increase in peak current when Ca ions are replaced by Sr or Ba ions; and 3) the greater inhibitory effect of Mg onI Ba thanI Ca. Theory indicates that surface charge cannot be screened completely even at 1m [Mg]0 and thus that Ca channel properties must be evaluated in the light of surface charge effects. For example, after correction for surface charge effects the relative permeabilities of Ca, Ba and Sr ions are equivalent. In the presence of Co ions, however, Ca ions are more permeable than Ba ions suggesting a channel binding site may be involved.  相似文献   

7.
Agents known to influence Ca2+ homeostasis affected significantly the vegetative growth and starvation-induced conidiation ofTrichoderma viride. Ca2+ in millimolar concentrations stimulated both growth and conidiation; a Ca2+ deprivation of the fungus by the chelation of extracellular Ca2+ (not Mg2+ or divalent trace metals) with EGTA (ethyleneglycolbis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid) restricted both the vegetative growth rate and starvation-induced conidiation. Both processes were affected by either Ca2+ or EGTA with different efficiencies. Divalent cations (Sr2+, Ba2+, Co2+, Ni2+, Mg2+, Cd2+, Cu2+, Mn2+) and La3+ (inorganic Ca2+ blockers) in millimolar concentrations exerted complex (stimulatory, inhibitory, or biphasic) effects on growth and conidiation. In general, their effects on the two processes were mutually different either qualitatively, or quantitatively, or both. Organic Ca2+ antagonists (verapamil and dihydropyridines) inhibited the vegetative growth. The results show that Ca2+ is required for vegetative growth and conidiation, and that different Ca2+-dependent mechanisms may be involved in the two processes. Divalent cations could serve as a tool for investigating the relationship between growth and conidiation.  相似文献   

8.
SPARC (secreted protein, acidic and rich in cysteine) is an extracellular, Ca(2+)-binding protein that inhibits the spreading of newly plated cells and elicits a rounded morphology in spread cells. In this study, I investigated whether the rounding effect of SPARC depends on the ability of the protein to chelate Ca2+ at the cell surface. Bovine aortic endothelial cells were plated in the presence of different concentrations of SPARC and Ca2+; control experiments were performed with 1 mM EGTA and with Mg2+. Quantitative estimates of cell rounding were calculated according to a rounding index. SPARC, at concentrations between 0.15 and 0.58 microM, elicited rounding (or prevented spreading) of cells cultured for 16-38 h in 0.5-2.0 mM Ca2+. Addition of 0.5-2.0 mM Mg2+ to cells previously rounded in the presence of SPARC did not abrogate the effect of SPARC. When the levels of extracellular Ca2+ were adjusted with 1 mM EGTA to maximum values ranging from 7.1 to 320 microM, cells displayed a rounded morphology in the presence of exogenous SPARC. Although the rounding induced by 1 mM EGTA was essentially reversed by the inclusion of 2 mM Ca2+, cultures containing these reagents together with SPARC maintained the rounded phenotype. These results do not support a mechanism that involves the abstraction of Ca2+ from proteins at the cell surface or the provision of Ca2+ from native extracellular SPARC to cells. Therefore, SPARC does not appear to act as a local chelator of extracellular Ca2+ and Mg2+ and presumably exerts its function as a modulator of cell shape via a different pathway.  相似文献   

9.
The chelating agents, ethylene glycol bis-(β-aminoethyl ether)-N,N′-tetraacetic acid (EGTA) and EDTA, had no effect on the initial interaction of phytohemagglutinin with lymphocytes at concentrations which have been shown previously to inhibit the development of the phytohemagglutinin response completely. However, they had a marked inhibitory effect on uptake of the amino acid analog, α-aminoisobutyric acid in both unstimulated and phytohemagglutinin-stimulated cells. The inhibition of amino acid uptake by EGTA could be reversed by adding Ca2+ but not Mg2+. These results demonstrated that Ca2+ is not essential to the initial interaction of phytohemagglutinin with the cell, but does influence amino acid transport which may be a critical preparatory event for later increased protein synthesis.  相似文献   

10.
Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc).  相似文献   

11.
8-azido-ATP, when used in the 0.2–5 μM concentration range, fulfills the criteria for a specific photoaffinity label for the (Ca+Mg)ATPase of sarcoplasmic reticulum. It is a substrate for the enzyme. It is a mixed inhibitor of ATPase activity. When photolyzed at 0° it is an inhibitor of ATPase activity. The photoinduced binding of 8-azido-ATP to the (Ca+Mg)ATPase is promoted by Ca2+. The dependence of the labeling of the (Ca+Mg)ATPase on 8-azido-ATP, Ca2+ and Mg2+ concentrations strongly suggests that 2 classes of sites are labeled. When 10–60 μM 8-azido-ATP was used to label sarcoplasmic reticulum, proteins in addition to the (Ca+Mg)ATPase were labeled.  相似文献   

12.
Z. Rengel 《Plant and Soil》1990,128(2):185-189
Ammonium acetate and BaCl2-triethanolamine were used to desorb Mg2+ from the root Donnan free space (DFS) of 23-d-old ryegrass (Lolium multiflorum Lam. cvs. Gulf and Wilo). Amounts of desorbed Mg2+ increased with the increase in Mg2+ activity of the nutrient solution. Slightly less Mg2+ was desorbed by Ba2+ than by NH4 +. Previously published data on short-term net Mg2+ uptake by intact 23-d-old ryegrass plants of the two cultivars were linearly related to the amount of exchangeable Mg+ desorbed from the root DFS (r2=0.90 and 0.81 for the desorption by NH4 + and Ba2+, respectively). A sward of Mg2+ ions attracted to the negative charges of the cell surface is suggested to represent a part of a pool of Mg2+ available for active transport through the plasmalemma.  相似文献   

13.
The Paramecium cell membrane was voltage-clamped under K current suppression conditions. Ciliary beating was registered using high-speed video microscopy. Depolarizing step pulses activated a transient inward current and induced reversed ciliary beating. Very strong positive steps inhibited ciliary reversal during the pulse suggesting inhibition of the Ca influx. We call the potential, which is sufficiently positive to induce transition from reversed to normal ciliary beating, the transition potential. The transition potential rose with increasing external Ca2+ showing saturation beyond 1 mM Ca2+. Addition of Mg2+, Ba2+ or K+ to the 1 mM Ca2+ bathing solution depressed the transition potential in a concentration-dependent manner. The depolarization-activated inward Ca current increased with rising external Ca concentration, and addition of either Mg2+, Ba2+ or K2+ diminished the inward Ca current. The diverging results of Ca2+-dependent positive shifts, and Mg2+-(Ba2+-, K+-) dependent negative shifts in transition potential are compared with shifts of VImax. It is concluded that external cations bind competitively — in addition to membrane surface charges — to affinity sites of Ca channel, where they specifically modulate permeation of calcium.  相似文献   

14.
The rates of adenosine triphosphate (ATP) production by isolated mitochondria and mitochondrial creatime kinase incubated in isotopically pure media containing, separately, 24Mg2+, 25Mg2+, and 26Mg2+ ions were shown to be strongly dependent on the magnesium nuclear spin and magnetic moment. The rate of adenosine 5′-diphosphate phosphorylation in mitochondria with magnetic nuclei25Mg is about twice higher than that with the spinless, nonmagnetic nuclei24.26Mg. When mitochondrial oxidative phosphorylation was selectively blocked by treatment with 1-methylnicotine amide, 25Mg2+ ions were shown to be nearly four times more active in mitochondrial ATP synthesis than 24,26Mg2+ ions. The rate of ATP production associated with creatine kinase is twice higher for 25Mg2+ than for 24.26Mg and does not depend on the blockade of oxidative phosphorylation. There is no difference between 24Mg2+ and 26Mg2+ effects in both oxidative and substrate phophorylation. These observations demonstrate that the enzymatic phosphorylation is a nuclear spin selective process controlled by magnetic isotope effect. The reaction mechanism proposed includes a participation of intermediate ion-radical pairs with Mg+ cation as a radical partner. Therefore, the key mitochondrial phosphotransferases work as a magnesium nuclear spin mediated molecular machines.  相似文献   

15.
Addition to rat liver mitochondria of 2 mM inorganic phosphate or 0.15 mM diamide, a thiol-oxidizing agent, induced an efflux of endogenous Mg2+ linear with time and dependent on coupled respiration. No net Ca2+ release occurred under these conditions, while a concomitant release of K+ was observed. Mg2+ efflux mediated either by Pi or low concentrations of diamide was completely prevented by EGTA, Ruthenium red, and NEM. These reagents also inhibited the increased rate of state 4 respiration induced both by Pi and diamide. At higher concentrations (0.4 mM), diamide induced an efflux of Mg2+ which was associated also with a release of endogenous Ca2+. Under these conditions EGTA completely prevented Mg2+ and K+ effluxes, while they were only partially inhibited by Ruthenium red and NEM. It is assumed that Mg2+ efflux, occurring at low diamide concentrations or in the presence of phosphate, is dependent on a cyclic in-and-out movement of Ca2+ across the inner mitochondrial membrane, in which the passive efflux is compensated by a continuous energy linked reuptake. This explains the dependence of Mg2+ efflux on coupled respiration, as well as the increased rate of state 4 respiration. The dependence of Mg2+ efflux on phosphate transport is explained by the phosphate requirement for Ca2+ movement.Abbreviations Diamide diazenedicarboxylic acidbis-dimethylamide - FCCP p-trifluoromethoxyphenylhydrazone - EGTA ethylene glycol-bis-(2-amino ethyl ether)-N,N-tetracetic acid - Pi inorganic phosphate - Ruthenium red Ru2(OH)2Cl4 · 7NH3 · 3H2O - state 4 controlled state of respiration in the presence of substrate - RCI respiratory control index - NEM N-ethyl maleimide A partial and preliminary report of these results has been published inBiochem. Biophys. Res. Comm.,78 (1977) 23.  相似文献   

16.
Renal function was observed in freshwater North American eels (Anguilla rostrata LeSueur) 2 weeks after the removal of the corpuscles of Stannius. There was a positive linear correlation between glomerular filtration rates and urine flow rates in both sham-operated and stanniectomized eels but there was no difference in slope or elevation between the two groups nor did urine flow rates ever exceed glomerular filtration rates. Osmolar clearance and free-water clearance were unchanged following stanniectomy. Plasma Ca2+ and K+ concentrations increased and plasma Mg2+, phosphate, Na+ and Cl- concentrations decreased following stanniectomy. Plasma ultrafilterable Ca increased and ultrafilterable Mg decreased after stanniectomy but neither changed relative to its total plasma concentration. Stanniectomy was followed by a decreased renal tubular reabsorption of Mg2+ relative to the amount filtered (C Mg/C In); the same applies to C Na/C In. Even though the filtered load of Ca increased in conjuction with the predictable hypercalcemia, there was no change in the fraction of filtered Ca reabsorbed. Net tubular secretion of phosphate was observed in both sham-operated and stanniectomized cels together with a slight increase in C phos/C In following stanniectomy. Some or all of these changes in plasma electrolytes and/or the modified renal transport of Na+, Mg2+ and possibly phosphate may be caused by the changes in cardiovascular function that were recently shown to follow stanniectomy.Abbreviations CSX Stanniectomized/stanniectomy - ER endoplasmatic reticulum - FW fresh water - GFR glomerular filtration rate - Pi inorganic phosphate - RAS renin-angiotensin system - SHM sham-operated - SW sea water - UFR urine flow rate - U/P ratio urine/plasma ratio  相似文献   

17.
Effects of six divalent metal cations: Fe2+, Ca2+, Zn2+, Mg2+, Cu2+and Mn2+ on fungal cell growth and lovastatin biosynthesis were investigated by submerged cultivation of Aspergillus terreus in a modified chemically defined medium. The influences of different initial concentrations of the above six metal cations were also examined at 1, 2, and 5 mM, respectively. Cu2+ apparently inhibited the cell growth, but had no influence on biosynthesis of lovastatin. All of Fe2+, Ca2+, Zn2+, Mg2+ and Mn2+ promoted the cell growth and lovastatin biosynthesis in different extents. The highest biomass of 13.8 ± 0.5 g l−1 and specific lovastatin titres of 49.2 ± 1.4 mg gDCW−1 were obtained at the level of 2 and 5 mM in the presence of Zn2+, respectively. The values were improved double and 14.4-fold. Excess Zn2+ inhibited the cell growth, but enhanced lovastatin biosynthesis with an increment of 17.6 mg l−1 per mM. The interactions of all metal cations slightly inhibited the lovastatin production comparing with the existence of Zn2+, Fe2+ and Mg2+ solely, yet remarkably improved the cell growth. These results suggest that the divalent metal ions Zn2+ or Fe2+ influence the production by regulating the action of key enzymes such as LovD or LovF in lovastatin biosynthesis.  相似文献   

18.
The characteristics of rat liver mitochondria swelling induced by diamide, an oxidizing agent for thiol groups, and by Ca ions are very similar. In both cases the swelling, which is initiated by addition of 0.5–1 mM phosphate or acetate, is prevented by FCCP, antimycin A, EGTA, Mg++ and ruthenium red. Diamide potentiates the swelling action of Ca++, while DTE potentiates that of Mg++. The additive effects of calcium and diamide on rat liver mitochondria have been correlated with their synergic action in promoting the release of mitochondrial Mg++. The results strongly indicate that some of the effects of diamide are mediated by a mobilization of endogenous divalent ions and that the antagonism between Ca++ and Mg++ is closely correlated with the redox state of membrane bound thiol groups.  相似文献   

19.
Silicon (Si, as silicate) is involved in numerous important structure and function roles in a wide range of organisms, including man. Silicate availability influences metal concentrations within various cell and tissue types, but, as yet, clear mechanisms for such an influence have been discovered only within the diatoms and sponges. In this study, the influence of silicate on the intracellular accumulation of metals was investigated in baker's yeast (Saccharomyces cerevisiae). It was found that at concentrations up to 10 mM, silicate did not influence the growth rate of S. cerevisiae within a standard complete medium. However, an 11% growth inhibition was observed when silicate was present at 100 mM. Intracellular metal concentrations were investigated in yeast cultures grown without added silicate (−Si) or with the addition of 10 mM silicate (+Si). Decreased amounts of Co (52%), Mn (35%), and Fe (20%) were found within +Si-grown yeast cultures as compared to −Si-grown ones, whereas increased amounts of Mo (56%) and Mg (38%) were found. The amounts of Zn and K were apparently unaffected by the presence of silicon. +Si enhanced the yeast growth rate for low-Zn2+ medium, but it decreased the growth rate under conditions of a low Mg2+ medium and did not alter the growth rates in high Zn2+ and Co2+ media. +Si doubled the uptake rate of Co2+ but did not influence that of Zn2+. We propose that a possible explanation for these results is that polysilicate formation at the cell wall changes the cell wall binding capacity for metal ions. The toxicity of silicate was compared to germanium (Ge, as GeO2), a member of the same group of elements as Si (group 14). Hence, Si and Ge are chemically similar, but silicate starts to polymerize to oligomers above 5 mM, whereas Ge salts remain as monomers at such concentrations. Ge proved to be far more toxic to yeast than Si and no influence of Si on Ge toxicity was found. We propose that these results relate to differences in cellular uptake.  相似文献   

20.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号