首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that alpha 1 beta 1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of alpha 1 beta 1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-alpha1 or anti-beta1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked alpha 1 beta 1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of alpha 1 beta 1 integrin. These results suggested that ERK1/2 activation is critical for the alpha 1 beta 1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   

2.
Expression of integrin, which mediates cell-matrix interaction, is affected by several cytokines, in particular by transforming growth factor-beta (TGF-beta). However, it is unknown whether, in an opposite way, a specific integrin is involved in cytokine synthesis. We tested this hypothesis. Function-blocking anti-alpha 5 integrin (fibronectin receptor) antibody increased TGF-beta secretion in growth-arrested human mesangial cells (2.3-fold) compared with control IgG or anti-alpha v beta 3 integrin (receptor for several matrix proteins) antibody. It also increased the secretion of plasminogen activator inhibitor-1 (PAI-1), a protein associated with matrix increase, by 3.2-fold. The increase in PAI-1 secretion induced by anti-alpha 5 integrin antibody was not abrogated by anti-TGF-beta neutralizing antibody. These results indicate that function-blocking of anti-alpha 5 integrin stimulates TGF-beta as well as PAI-1 production, suggesting that alpha 5 integrin is involved in fibrotic process. Function-modulation of a specific integrin thus appears to play a role in glomerular remodeling.  相似文献   

3.
Platelet-derived growth factor-BB (PDGF-BB) has been implicated in the pathogenesis of progressive glomerulonephritis (GN). Previous studies have reported that PDGF-BB stimulates mesangial cells (MCs)-induced collagen matrix remodeling through enhancement of alpha1beta1 integrin-dependent migratory activity. To determine the cell signaling pathway responsible for abnormal MC-related mesangial matrix remodeling in progressive GN, we studied the involvement of the extracellular signal-regulated kinase (ERK)/activator protein-1 (AP-1) pathway in PDGF-BB-enhanced collagen gel contraction. Western blotting and gel shift assay revealed that MC-induced gel contraction resulted in ERK activation in parallel with that of AP-1 binding, peaking at 4 h and lasting at least for 24 h. Application of the MEK inhibitor, U0126, and the c-jun/AP-1 inhibitor, curcumin, inhibited gel contraction and AP-1 activity, respectively, dose dependently. PDGF-BB enhanced not only gel contraction but ERK phosphorylation and AP-1 activity by MCs. Marked inhibitory effects on PDGF-BB-induced gel contraction and ERK/AP-1 activity were observed in the presence of either function blocking anti-alpha1- or anti-beta1-integrin antibody or U0126. Consistently, AP-1-inactive MCs expressing a dominant-negative mutant of c-jun showed a significant decrease of PDGF-BB-induced gel contraction as compared with mock-transfected MCs. Finally, migration assay showed that ERK/AP-1 activity is required for PDGF-BB-stimulated alpha1beta1 integrin-dependent MC migration to collagen I. These results indicated that PDGF-BB enhances alpha1beta1 integrin-mediated collagen matrix reorganization through the activation of the ERK/AP-1 pathway that is crucial for MC migration. We conclude that the ERK/AP-1 pathway plays an important role in PDGF-BB-induced alpha1beta1 integrin-dependent collagen matrix remodeling; therefore, the inhibition of its pathway may provide a novel approach to regulate abnormal collagen matrix remodeling in progressive GN.  相似文献   

4.
Thrombospondin-1 (TSP-1) is an extracellular glycoprotein that is involved in a variety of physiological processes such as tumor cell adhesion, invasion, and metastasis. It has been hypothesized that TSP-1 provides an adhesive matrix for osteosarcoma cells. Here we present data showing that TSP-1 can promote cell substrate adhesion to U2OS and SAOS cells through the alpha 4 beta 1 integrin. The dose-dependent adhesion to TSP-1 was inhibited by anti-integrin antibodies directed against the alpha 4 or beta 1 subunit, but not by control antibodies against other integrins. To localize the potential alpha 4 beta 1-binding site within the TSP-1 molecule, the protein was subjected to limited proteolysis with chymotrypsin in the absence of calcium. The stable 70-kDa core fragment produced under these conditions promoted alpha 4 beta 1-dependent osteosarcoma cell adhesion in a manner similar to that of the intact protein. Moreover adhesion experiments with neutralizing antibodies revealed that the adhesion was totally dependent on the alpha 4 beta 1 interaction. Further blocking experiments with potential inhibitory peptides revealed that the alpha 4 beta 1-mediated adhesion was not influenced by peptides containing the RGD sequence. Attachment to the 70-kDa fragment was strongly inhibited by the CS-1 peptide, which represents the most active recognition domain for alpha 4 beta 1 integrin in fibronectin. The present data provide evidence that TSP-1 contains an alpha 4 beta 1 integrin-binding site within the 70-kDa core region.  相似文献   

5.
betaig-h3 is an extracellular matrix protein and its expression is highly induced by TGF-beta and it has also been suggested to play important roles in skin wound healing. In this paper, we demonstrate that betaig-h3 is present in the papillary layer of dermis and synthesized in the basal keratinocytes in vivo and its expression is induced by TGF-beta in normal human keratinocytes (NHEK) and HaCaT cells. betaig-h3 mediates not only adhesion and spreading of keratinocytes but also supports migration and proliferation. These activities are mediated through interacting with alpha3beta1 integrin. Previously identified two alpha3beta1 integrin-interacting motifs of betaig-h3, EPDIM, and NKDIL, are responsible for these activities. The results suggest that betaig-h3 may regulate keratinocyte functions in normal skin and potentially during wound-healing process.  相似文献   

6.
Interactions between fetal extravillous trophoblast cells and maternal uterine cells are of critical importance in successful placentation. In the first trimester, trophoblasts invade the uterine environment and reach the spiral arteries where they interact with vascular cells; however, little is known of the nature of these interactions. We have developed a fluorescent binding assay to investigate the contact between trophoblasts and endothelial cells and to determine its regulation by cytokines and adhesion molecules. Stimulation of an endothelial cell line (SGHEC-7) with interleukin-1beta or tumour necrosis factor-alpha significantly increased adhesion of the first-trimester extravillous trophoblast-derived cell line, SGHPL-4. Using blocking antibodies, vascular cell adhesion molecule-1 (VCAM-1) and integrin alpha4beta1 (VLA-4), but not intercellular adhesion molecule-1 (ICAM-1), were shown to be important in trophoblast binding to activated endothelial cells. SGHPL-4 cells were shown to express HLA-G, alpha4beta1 and ICAM-1 at high levels and LFA-1 and VCAM-1 at lower levels. ICAM-1 and VCAM-1 are expressed on SGHEC-7 cells and their expression was confirmed on primary decidual endothelial cells. In conclusion, we have demonstrated the importance of VCAM-1 and alpha4beta1 in trophoblasts-endothelial interactions. Improved knowledge of the nature of these fetal-maternal interactions will have implications for understanding situations when placentation is compromised.  相似文献   

7.
Epidermal growth factor (EGF) receptor (EGFR) is involved in various basic biochemical pathways and is thus thought to play an important role in cell migration. We examined the effect of EGF on motility, migration, and morphology of a human adenocarcinoma cell line CAC-1. EGF treatment increased the motility of cervical adenocarcinoma cells and promoted migration of the cells on fibronectin and type IV collagen. EGF induced morphological changes with lamellipodia during EGFR-mediated motility. The results of an immunoprecipitation study showed that EGF up-regulated the expression of alpha2beta1-integrin in a dose-dependent manner. EGF-induced cell migration was blocked by alpha2beta1-integrin antibody. Our results also showed that EGF treatment stimulated the level of tyrosine dephosphorylation of FAK, which is required for EGF-induced changes in motility, migration, and cell morphology. A tyrosine kinase inhibitor (ZD1839) blocked EGF-induced changes in cervical adenocarcinoma cells. The results suggest that EGF promotes cell motility and migration and increases the expression of alpha2beta1-integrin, possibly by decreasing FAK phosphorylation.  相似文献   

8.
Endothelin-1 (ET-1), a potent vasoconstrictor, has been implicated in the pathogenesis of collagen accumulation, extracellular matrix remodeling, and renal and cardiac fibrosis in diabetes. However, the mechanism by which ET-1 promotes collagen accumulation remains unclear. Here, we analyzed the gene expression profile of ET-1-stimulated mesangial cells to identify determinants of collagen accumulation. In human mesangial cells (a microvascular pericyte that secretes excess collagen in diabetic glomerulosclerosis), ET-1 increased mRNA and protein for MCP-1 (macrophage chemoattractant protein-1) and IL-6. ET-1-induced MCP-1 and IL-6 mRNAs and proteins were blocked by an ET(A) (but not ET(B)) receptor antagonist. ET-1/ET(A) receptor signaling evoked a 7.4-fold increase in collagen accumulation. Exogenous addition of either recombinant MCP-1 or IL-6 increased collagen accumulation by 3.5-fold. Co-stimulation with both MCP-1 and IL-6 did not elevate collagen accumulation further. Neither an MCP-1-neutralizing antibody nor an MCP-1 receptor antagonist inhibited ET-1-induced collagen accumulation. Similarly, neutralizing antibodies against IL-6 or the gp130 subunit of the IL-6 receptor did not attenuate ET-1-induced collagen accumulation. However, co-incubation with MCP-1- and IL-6-neutralizing antibodies inhibited ET-1-induced collagen accumulation by 52%, suggesting a robust autocrine loop wherein MCP-1 and IL-6 are redundant. Taken together, these results demonstrate that an autocrine signaling loop involving MCP-1 and IL-6 contributes to ET-1-induced collagen accumulation.  相似文献   

9.
We recently showed that alpha4beta1 integrin induces B-cell chronic lymphocytic leukemia (B-CLL) cell resistance to fludarabine-induced apoptosis via upregulation of Bcl-xL. We have now studied whether p53 was involved in this response. Cells from five B-CLL patients with wild-type p53 determined by DNA sequencing, or from the EHEB cell line, cultured on the alpha4beta1 ligand H/89 during fludarabine treatment, showed significantly higher viability (P相似文献   

10.
Integrin receptors are crucial players in cell adhesion and migration. Identification and characterization of cellular proteins that interact with their short alpha and beta cytoplasmic tails will help to elucidate the molecular mechanisms by which integrins mediate bi-directional signaling across the plasma membrane. Integrin alpha2beta1 is a major collagen receptor but to date, only few proteins have been shown to interact with the alpha2 cytoplasmic tail or with the alpha2beta1 complex. In order to identify novel binding partners of a alpha2beta1cytoplasmic domain complex, we have generated recombinant GST-fusion proteins, incorporating the leucine zipper heterodimerization cassettes of Jun and Fos. To ascertain proper functionality of the recombinant proteins, interaction with natural binding partners was tested. GST-alpha2 and GST-Jun alpha2 bound His-tagged calreticulin while GST-beta1 and GST-Fos beta1 proteins bound talin. In screening assays for novel binding partners, the immobilized GST-Jun alpha2/GST-Fos beta1 heterodimeric complex, but not the single subunits, interacted specifically with endothelial cell-derived vimentin. Vimentin, an abundant intermediate filament protein, has previously been shown to co-localize with alphavbeta3-positive focal contacts. Here, we provide evidence that this interaction also occurs with alpha2beta1-enriched focal adhesions and we further show that this association is lost after prolonged adhesion of endothelial cells to collagen.  相似文献   

11.
The α5β1 integrin heterodimer regulates many processes that contribute to embryonic development and angiogenesis, in both physiological and pathological contexts. As one of the major adhesion complexes on endothelial cells, it plays a vital role in adhesion and migration along the extracellular matrix. We recently showed that angiogenesis is modulated by syntaxin 6, a Golgi- and endosome-localized t-SNARE, and that it does so by regulating the post-Golgi trafficking of VEGFR2. Here we show that syntaxin 6 is also required for α5β1 integrin-mediated adhesion of endothelial cells to, and migration along, fibronectin. We demonstrate that syntaxin 6 and α5β1 integrin colocalize in EEA1-containing early endosomes, and that functional inhibition of syntaxin 6 leads to misrouting of β1 integrin to the degradation pathway (late endosomes and lysosomes) rather transport along recycling pathway from early endosomes; an increase in the pool of ubiquitinylated α5 integrin and its lysosome-dependent degradation; reduced cell spreading on fibronectin; decreased Rac1 activation; and altered Rac1 localization. Collectively, our data show that functional syntaxin 6 is required for the regulation of α5β1-mediated endothelial cell movement on fibronectin. These syntaxin 6-regulated membrane trafficking events control outside-in signaling via haptotactic and chemotactic mechanisms.  相似文献   

12.
Antiangiogenic activity can be elicited by the kringle domains 1 and 2 of tissue-type plasminogen activator (TK1-2), or the kringle 2 domain alone. In a previous report, we showed that the anti-migratory effect of TK1-2 is mediated in part by its interference with integrin α2β1. Since integrin α2β1 interacts with collagen type I through the DGEA (Asp-Gly-Glu-Ala) amino acid sequence, and a similar sequence, DGDA (Asp-Gly-Asp-Ala), exists in the kringle 2 domain, we investigated whether the DGDA sequence has a role in antiangiogenic activity of TK1-2. In an adhesion assay, the DGDA peptide inhibited adhesion of human umbilical vein endothelial cells (HUVECs) to immobilized TK1-2. Pretreatment of the DGDA peptide also blocked anti-migratory activity of TK1-2. When the DGDA peptide alone was tested for antiangiogenic activity, it effectively inhibited VEGF-induced migration of HUVECs and tube formation on Matrigel. In addition, the DGDA peptide decreased differentiation of endothelial progenitor cells on collagen type I matrix. These data suggest that the DGDA sequence presents a functional epitope of TK1-2 and that it can be used as a potential novel antiangiogenic peptide.  相似文献   

13.
Epidemiological studies have shown that cigarette smoke, an oxidant agent, is a risk factor for the development of diabetic nephropathy (DN), in which pathogenesis transforming growth factor beta(1) (TGFbeta(1)) plays a key role. In our experimental model we exposed mesangial cell cultures to cigarette smoke concentrate (CSC) to study the effect of smoking on the pathogenesis of DN. Thus, we analyzed the effect of CSC on TGFbeta(1) and lipid peroxidation (8-epi-PGF(2alpha)) in rat mesangial cells. Furthermore, since the protein kinase C (PKC) pathway appears to be a key factor for the enhanced production of TGFbeta(1), we also analyzed the effect of the selective PKCbeta inhibitor LY379196 on TGFbeta(1) response to CSC. CSC induced an increase of both TGFbeta(1) and 8-epi-PGF(2) compared to basal conditions (5 mM glucose). The CSC-induced increase in TGFbeta(1) secretion was significantly suppressed by LY379196. These data suggest that smoking could increase TGFbeta(1) production, probably due to oxidative stress and PKCbeta activation. This finding supports the concept that smoking is a risk factor for DN development.  相似文献   

14.
15.
Integrin α9β1 mediates accelerated cell adhesion and migration through interactions with a number of diverse extracellular ligands. We have shown previously that it directly binds the vascular endothelial growth factors (VEGF) A, C, and D and contributes to VEGF-induced angiogenesis and lymphangiogenesis. Until now, the α9β1 binding site in VEGF has not been identified. Here, we report that the three-amino acid sequence, EYP, encoded by exon 3 of VEGF-A is essential for binding of VEGF to integrin α9β1 and induces adhesion and migration of endothelial and cancer cells. EYP is specific for α9β1 binding and neither requires nor activates VEGFR-2, the cognate receptor for VEGF-A. Following binding to EYP, integrin α9β1 transduces cell migration through direct activation of the integrin signaling intermediates Src and focal adhesion kinase. This interaction is biologically important because it mediates in vitro endothelial cell tube formation, wound healing, and cancer cell invasion. These novel findings identify EYP as a potential site for directed pharmacotherapy.  相似文献   

16.
17.
Searching for CCN family protein 2/connective tissue growth factor (CCN2/CTGF) interactive proteins by yeast-two-hybrid screening, we identified fibronectin 1 gene product as a major binding partner of CCN2/CTGF in the chondrosarcoma-derived chondrocytic cell line HCS-2/8. Only the CT domain of CCN2/CTGF bound directly to fibronectin (FN). CCN2/CTGF and its CT domain enhanced the adhesion of HCS-2/8 cells to FN in a dose-dependent manner. The CCN2/CTGF-enhancing effect on cell adhesion to FN was abolished by a blocking antibody against alpha5beta1 integrin (alpha5beta1), but not by one against anti-alphavbeta3 integrin. These findings suggest for the first time that CCN2/CTGF enhances chondrocyte adhesion to FN through direct interaction of its C-terminal CT domain with FN, and that alpha5beta1 is involved in this adhesion.  相似文献   

18.
The mechanisms underlying the altered osteoblastogenesis and bone loss in response to disuse are incompletely understood. Using the rat tail suspension model, we studied the effect of skeletal unloading on osteoblast and osteocyte apoptosis. Tail suspension for 2 to 7 days decreased tibial bone mass and induced early apoptotic loss of osteoblasts and delayed apoptotic loss of osteocytes. Surrenal gland weight and plasma corticosterone levels did not differ in loaded and unloaded rats at any time point, indicating that osteoblast/osteocyte apoptosis occurred independently of endogenous glucocorticoids. The mechanistic basis for the disuse-induced osteoblast/osteocyte apoptosis was examined. We found that alpha5beta1 integrin and phosphorylated phosphatidyl-inositol-3 kinase (p-PI3K) protein levels were transiently decreased in unloaded metaphyseal long bone compared to loaded bones. In contrast, p-FAK and p-ERK p42/44 levels were not significantly altered. Interestingly, the reduced p-PI3K levels in unloaded long bone was associated with decreased levels of the survival protein Bcl-2 with unaltered Bax levels, causing increased Bax/Bcl-2 levels. The results indicate that skeletal unloading in rats induces a glucocorticoid-independent, immediate increase in osteoblast apoptosis associated with decreased alpha5beta1-PI3K-Bcl-2 survival pathway in rat bone, which may contribute to the altered osteoblastogenesis and osteopenia induced by unloading.  相似文献   

19.
The importance of transforming growth factor-beta1 (TGF-beta1) in plasminogen activator inhibitor-1 (PAI-1) gene expression has been established, but the precise intracellular mechanisms are not fully understood. Our hypothesis is that the actin cytoskeleton is involved in TGF-beta1/MAPK-mediated PAI-1 expression in human mesangial cells. Examination of the distributions of actin filaments (F-actin), alpha-actinin, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunofluorescence and immunoprecipitation revealed that ERK and JNK associate with alpha-actinin along F-actin and that TGF-beta1 stimulation promote the dissociation of ERK and JNK with F-actin. Disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and JNK and modulated PAI-1 expression and promoter activity under both basal and TGF-beta1-stimulated conditions. Stabilizing actin prevented dephosphorylation of ERK and JNK. ERK and JNK inhibitors and overexpressed dominant negative mutants antagonized the ability of TGF-beta1 to increase PAI-1 expression and promoter activity. Disassembly of F-actin also inhibited AP-1 DNA binding activity as determined by electrophoretic mobility shift assay using AP-1 consensus oligonucleotides derived from human PAI-1 promoter. F-actin stabilization prevented loss of AP-1 DNA binding activity. Therefore, changes in actin cytoskeleton modulate the ability of TGF-beta1 to stimulate PAI-1 expression through a mechanism dependent on the activation of MAPK/AP-1 pathways.  相似文献   

20.
Leptin increases human alpha1 (I) collagen mRNA and type I collagen production and enhances hepatic fibrosis in animal models of hepatic fibrosis. These effects of leptin on fibrogenesis may be mediated by TGFbeta1, since leptin increases the TGFbeta type II receptor and augments the effect of TGFbeta1 on collagen production by stellate cells. In this study, leptin increased the activity of the human alpha1 (I) collagen promoter in transfected stellate cells. Leptin did not further enhance the activation of the promoter induced by TGFbeta1. Leptin had no effects on the transfected TGFbeta-responsive p3TP-LUX plasmid, which contains 3 CAGA elements that are essential and sufficient for the induction by TGFbeta. Leptin did not increase significantly the binding of proteins to two TGFbeta1 responsive elements in the human alpha1 (I) collagen promoter. In conclusion, this study shows that leptin activates the alpha1 (I) collagen gene and that this effect is not mediated by TGFbeta responsive elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号