首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatography on cellulose DEAE-52 columns revealed that the glucocorticoid receptor from rat lung cytosol consisted of a component in the 0.001 M prewash, revealed with synthetic steroids and natural mineralocorticoids, a second component eluted with 0.04 M PO4, labelled with triamcinolone, dexamethasone, and a third moiety in the 0.06 M PO4 region, evident with natural glucocorticoids (corticosterone, cortisol) as well as mineralocorticoids (aldosterone, deoxycorticosterone). The thrid component coelutedf with rat blood serum transcortin in double labelled experiments. Rat lung was devoid of another component in the 0.02 M PO4 found in rat liver supernate and of the mineralocorticoid receptor evident only in rat kidney. Chromatography on Sephadex G-200 columns revealed a shift of radioactivity from a higher to a lower molecular weight region in the presence of 0.4 M KCl. Collectively, these studies indicate the subunit nature of the lung receptor as evidenced in most tissues hitherto tested. Moreover, polymorphism within a given subunit component can not be revealed by competition alone, as attempted by others, but can be revealed under selected conditions of physical separation.  相似文献   

2.
We have studied the properties of the nuclear receptors for aldosterone in kidneys of chick embryo. Aliquots of 0.4 M KCl nuclear extracts were incubated with [3H]aldosterone with or without 1 microM RU28362, a potent glucocorticoid analog. Scatchard analyses of binding data revealed two classes of binding sites with Ka of 0.26 and 0.03 X 10(9) M-1 and Nmax of 330 fmol and 620 fmol/mg DNA respectively. In presence of RU28362, however, we observed only a single class of binding sites with a Ka of 1.02 X 10(8) M-1 and a Nmax of 90 fmol/mg DNA. Competition studies performed in presence of RU28362 showed that aldosterone was the more effective competitor followed by corticosterone, progesterone, deoxycorticosterone, dexamethasone, cortisol, triamcinolone acetonide and cortisone. The nuclear complexes had a sedimentation coefficient in the area of 8 S which changed to 4-5 S in the presence of 0.4 M KCl. This effect of KCl was prevented by the addition of 10 mM sodium molybdate. Always in the presence of the glucocorticoid analog, by DEAE-c chromatography we observed a major specific aldosterone-binding fraction which was eluted with 0.2 M KCl. This fraction sedimented at 8.4 S in the absence of sodium molybdate and KCl. In the absence of RU28362, DNA-c columns retained only a small portion of the nuclear complexes which were eluted with KCl. These complexes sedimented, on sucrose gradient, at 4.6 and 3.1 S, whereas those which did not bind to DNA-c had a sedimentation coefficient of 8 S. In the presence of RU28362, the majority of bound [3H]aldosterone remained in the column flow-through fraction; when this fraction was further analyzed on DEAE-c, complexes were eluted with 0.2 and 0.3 M KCl. These data indicate that nuclear receptors for aldosterone are present in small number in kidneys of chick embryo and that they are mostly in the 8 S form.  相似文献   

3.
In experiments on direct effects of prolonged administration of estrogen on In experiments on direct effects of prolonged administration of estrogen on mean arterial pressure (MAP) and plasma corticosteroid-binding variables in the rabbit the following observations were made. Estrogen had no effect on MAP but resulted in a nonsignificant stimulation of total plasma corticosteroids and a marked increase in corticosteroid-binding globulin (CBG) binding capacity which increased from a control value of 18.8 +/- (SD) 1.2 micrograms/100 ml to 28.1 +/- 2.3 micrograms/100 ml (p less than 0.001) following the administration of estrogen for the first 21 days (approx. 10 micrograms/day) and then further to 31.4 +/- 2.8 (p less than 0.001 vs. control values) after a higher estrogen dose of approximately 30 micrograms/day for the next 30 days, respectively. Plasma aldosterone concentration was not affected by estrogen treatment. In contrast to CBG, binding of aldosterone to plasma aldosterone-binding globulin was totally absent before and following the estrogen treatment. The striking difference between the rabbit showing an absence of plasma protein binding of aldosterone and several other animal species is perhaps of great importance for the blood pressure regulation and for understanding of the particular resistance of blood pressure to salt or mineralocorticoids reported in this species.  相似文献   

4.
Neoplastic epithelial duct cell line from human salivary gland (HSG cell) contained cytosol glucocorticoid receptor. Scatchard analysis of cytosol indicated that the dissociation constant (Kd) was 5.6-6.5 nmol/l and the number of binding sites was 83-92 fmol/mg protein. A competitive assay showed that the binding sites for [3H]triamcinolone acetonide were specific to glucocorticoid. Glycerol density gradient centrifugation displayed that the [3H]triamcinolone acetonide receptor complexes sedimented in the 8.5 S region under low salt conditions and in the 4.2 S region under high salt condition (0.4 M KCl). The same high salt conditions induced an increased binding of [3H]triamcinolone acetonide complexes for DNA-cellulose.  相似文献   

5.
Characterization of glucocorticoid receptor in HeLa-S3 cells   总被引:1,自引:0,他引:1  
H Hoschützky  O Pongs 《Biochemistry》1985,24(25):7348-7356
Glucocorticoid receptor of the human cell line HeLa-S3 has been characterized and has been compared to rat and to mouse glucocorticoid receptors. If HeLa cells were lysed in the absence of glucocorticoid, glucocorticoid receptor was isolated in a nonactivated form, which did not bind to DNA-cellulose. If HeLa cells were preincubated with glucocorticoid, glucocorticoid receptor was isolated in an activated, DNA-binding form. HeLa cell glucocorticoid receptor bound [3H]triamcinolone acetonide with a dissociation constant (KD = 1.3 nM at 0 degrees C) that was similar to those of mouse and rat glucocorticoid receptors. Similarly, the relative binding affinities for steroid hormones decreased in the order of triamcinolone acetonide greater than dexamethasone greater than promegestone greater than methyltrienolone greater than aldosterone greater than or equal to moxestrol. Nonactivated and activated receptors were characterized by high-resolution anion-exchange chromatography (FPLC), DNA-cellulose chromatography, and sucrose gradient centrifugation. Human, mouse, and rat nonactivated glucocorticoid receptors had very similar ionic and sedimentation properties. Activated glucocorticoid receptors were eluted at similar salt concentrations from DNA-cellulose columns but at different salt concentrations from the FPLC column. A monoclonal mouse anti-rat liver glucocorticoid receptor antibody [Westphal, H.M., Mugele, K., Beato, M., & Gehring, U. (1984) EMBO J. 3, 1493-1498] did not cross-react with HeLa cell glucocorticoid receptor. Glucocorticoid receptors of HeLa, HTC, and S49.1 cells were affinity labeled with [3H]dexamethasone and with [3H]dexamethasone 21-mesylate. The molecular weights of [3H]dexamethasone 21-mesylate labeled glucocorticoid receptors (MT 96 000 +/- 1000) were undistinguishable by polyacrylamide gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The [3H]corticosterone binders from rat brain and kidney were characterized by binding affinity and chromatographies, and compared with the binders for [3H]aldosterone and [3H]triamicinolone acetonide. Corticosterone-binding globulin-like molecules at very high concentrations in crude extracts were completely eliminated by a DEAE-gel adsorption procedure. [3H]Aldosterone binder in the renal, DEAE-treated fraction was recovered in a single peak by gel-filtration chromatography and by ultracentrifugation in linear sucrose gradients, independent of hormone-binding and tungstate, a stabilizer of the binder. The Stokes' radius and sedimentation coefficient of the renal aldosterone binder were 6.6 nm and 9.3S, respectively, indicating an apparent molecular weight of 263,000. Corticosterone-preferring binder also existed in the DEAE-treated fraction. Both aldosterone and corticosterone binders were found in the brain and kidney preparations. Comparison among the binders showed identical values of Stokes' radius and elution pattern from DEAE-Toyopearl in a linear salt gradient regardless of the organ and the hormones. Scatchard analyses of [3H]aldosterone and [3H]corticosterone binding showed for each ligand only one group of high-affinity sites with the equivalent dissociation constants, 4-7 nM. The orders of steroids in competing for the two high-affinity sites were equivalent: corticosterone greater than or equal to aldosterone much greater than triamcinolone acetonide, and that for the triamcinolone acetonide binding was triamcinolone acetonide much greater than aldosterone greater than or equal to corticosterone. Hydroxyapatite column chromatography separated the aldosterone and corticosterone binders from the triamcinolone acetonide binder, but not the aldosterone binder from the corticosterone binder. It is concluded that aldosterone and corticosterone binders distinct from triamcinolone acetonide binder exist in rat brain and kidney.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
J E Goral  J L Wittliff 《Biochemistry》1975,14(13):2944-2952
Kinetic and molecular properties of components binding [3H]triamcinolone acetonide were studied using 105,000g supernatants of lactating mammary gland, R3230AC, and dimethylbenz[a]anthracene (DMBA) induced mammary tumors of the rat. Using a dextran-coated charcoal adsorption procedure, the relationship between specific glucocorticoid binding and protein concentration was linear in the range of 0.5-4.0 mg/reaction. These cytoplasmic macromolecules bound [3H]triamcinolone acetonide with limited capacity (50-400 fmol/mg of cytosol protein) and high affinity, Kd approximately 10(-8)-10(-9) M. Optimal binding was obtained when homogenizations were made in Tris buffers, at pH 7.4, containing monothioglycerol. Time course of association of [3H]triamcinolone acetonide and its binding sites showed maximal binding by 6-8 hr at 3 degrees which remained unchanged up to 24 hr. The rate constant of association at 3 degrees was in the range of 2-4 x 10(5) M-1 min-1. The rate constant of dissociation of bound [3H]triamcinolone acetonide could not be calculated accurately since the reaction was essentially irreversible for 5 hr at 3 degrees. Estimation of the half-life of the steroid-binding protein complexes from the Kd and the rate constant for association gave a value of 11-12 hr. From ligand specificity studies, the glucocorticoids, triamcinolone acetonide, corticosterone, cortisol, and dexamethasone competed well for [3H]triamcinolone acetonide binding sites. Progesterone, aldosterone, and the anti-glucocorticoid, cortexolone, were also good competitors while androgens and estrogens were weak inhibitors of binding. The binding compenents sedimented at 7-8 S in sucrose gradients of low ionic strength and dissociated into lower molecular weight components sedimenting at 4-5S in high ionic strength gradients. Studies in vivo using animals bearing the DMBA-induced tumor demonstrated that [3H]triamcinolone acetonide binding complexes were present in cytoplasmic and nuclear compartments. Sedimentation coefficients of the cytoplasmic and nuclear forms of these receptors labeled in vivo were 7-8S and 4-5S, respectively. These studies suggest that the molecular and kinetic binding properties of glucocorticoid receptors in neoplastic mammary tissues are similar to those of the normal mammary gland.  相似文献   

8.
The binding of the natural mineralocorticoid aldosterone and the glucocorticoid corticosterone to macromolecules in rat liver and kidney cytoplasmic fractions was compared by various chromatographic procedures. Equilibration of kidney cytosol with 10nM-aldosterone, either alone or in the presence of a competing steroid, was ideal for ionexchange chromatography of DEAE-cellulose DE-52, and revealed the presence of four sorts of binding components. One of these, eluted in the 0.001M-phosphate pre-wash, and another, less abundant, forming a peak at 0.006M-phosphate, did not bind corticosterone at equimolar concentrations, and appear to constitute the mineralocorticoid-specific 'MR' receptor in rat kidney. They could not be detected in the liver. Radioactivity eluted in the 0.02 and 0.06M-phosphate regions on DEAE-cellulose DE-52 appears to be due to [3H]aldosterone binding to glucocorticoid-specific 'GR' receptors and to transcortin respectively, since labelling was greater with corticosterone even at 10 nM than with the mineralocorticoid at 100nM and since [14C]corticosterone bound to blood serum transcortin was always co-chromatographed in the 0.06M-phosphate region. These two components appear to be identical with those in the liver and could be labelled maximally only by 100nM-corticosterone. The separation between specific mineralo- and glucocorticoid-binding species was less clear when chromatography was attempted on DEAE-Sephadex A-50 columns, possibly because of disaggregation into subunits in the presence of the high KC1 concentrations required for elution. Competitive binding followed by filtration through Sephadex G-200 gel indicated that cellular MR binders, unlike GR receptors, exist mostly as high-molecular-weight aggregates, although both appear to exhibit a comparable monomeric molecular weight of approx. 67000.  相似文献   

9.
Cytosol of the benign hypertrophic human prostate was prepared in a low salt medium and then the concentration of salt was increased to 0.4 M with KCl (0.4 M KCl-cytosol). This preparation showed a high affinity binding to R 1881 and the binding was specific for androgens. These results suggest that the binding of the preparation to R 1881 was due mainly to the cytosolic androgen receptor. The R 1881 binding component in the 0.4 M KCl-cytosol was sedimented at 3S by sucrose density gradient centrifugation. The small sedimentation coefficient of the binder seems to be due to the high concentration of salt and not to degradation by proteolytic enzymes in the preparation. The molecular weight, Stokes radius and frictional ratio of this binding component were 32,000, 25.9 A and 1.24, respectively.  相似文献   

10.
Author index     
Binding of dexamethasone · receptors with isolated nuclei, DNA-cellulose and cellulose has been compared with respect to dependence on salt concentration and resistance to KCl extraction and DNAase I digestion. A solution of cytoplasmic dexamethasone-receptor complexes was prepared by the incubation of rat thymus cells with steroid at 3°C and breaking the cells by hypotonic lysis. Activation of the complexes was accomplished by warming the solution at 25°C for 15 min. Activation significantly increased the ability of dexamethasone · receptors to bind to nuclei and DNA-cellulose but not to cellulose. Dexamethasone-receptor complexes bound to nuclei at 3°C are completely resistant to extraction with 0.1 M KCl, 76% resistant to 0.2 M KCl and 20% resistant to 0.4 M KCl. Dexamethasone · receptors bound to DNA-cellulose are 45% resistant to extraction with 0.1 M and 0.2 M KCl and 29% resistant to 0.4 M KCl extraction. Cellulose-bound dexamethasone · receptors are not resistant to any of these extractions. DNAase I treatment releases 60% of the dexamethasone · receptors bound to DNA-cellulose but only 13% of those bound to nuclei, though at least 60% of the nuclear DNA is solubilized. The presence of 0.15 M KCl decreases binding of activated dexamethasone · receptors to nuclei by 73% but to DNA-cellulose by only 17%. Pretreatment of nuclei with 0.1–0.4 M KCl reduces their capacity to bind activated dexamethasone · receptors by 90% whereas similar treatment reduces the capacity of DNA-cellulose to bind dexamethasone · receptors by only 29%. Nuclei extracted with 0.1 M KCl appear to have a limited capacity to accept dexamethasone · receptors. These studies demonstrate that binding of dexamethasone · receptors to nuclei and DNA-cellulose differs by (a) the higher resistance of nuclear complexes to KCl and DNAase I treatment; (b) the much greater sensitivity of nuclei to KCl treatment.  相似文献   

11.
(1) Trypsin digestion of dog cardiac myosin leads to the formation of two dissimilar types of enzymatically active species based on the elution pattern of Sephadex G-200 columns. (2) When the digestion is performed in 0.6 m KCl the major protein peak is eluted at the exclusion limit of the column. Sodium dodecyl sulfate (SDS)-gel electrophoresis of this peak shows the heterogeneity of the heavy chain component, indicating multiple sites of cleavage by trypsin. (3) When the trypsinization is carried out in 0.15 m KCl in the presence of EDTA and β-mercaptoethanol, the major protein peak (retarded on the Sephadex G-200 column) has a high Ca2+-ATPase activity. On SDS-gel electrophoresis it shows only two major bands with corresponding molecular weights of 58,000 and 28,000, respectively. The 28,000-molecular-weight band apparently corresponds to cardiac light chain 1 of native myosin. (4) The results suggest that, with trypsinization of myosin in 0.15 m KCl, only a limited number of sites is exposed to trypsin. The fragment isolated under these conditions differs from a papain digestion fragment with respect to its molecular weight and the composition of the heavy chain fraction. On the basis of the molecular weight of the undissociated fragment it seems likely that the fragment retains a heavy meromyosin type (two heads) of configuration.  相似文献   

12.
Binding of cortisol and corticosterone by serum proteins is well established, but discrepancies exist regarding aldosterone. We have observed that approximately 1% of 3H-aldosterone incubated with rat serum was bound in a time-dependent process, although it was not competed by a large excess of non-radioactive aldosterone, assessed by Florisil separation or gel filtration on Sephadex G-50 columns. After electrophoresis on cellulose acetate of rat serum incubated with 3H-aldosterone, specific or non-specific binding to protein fractions was not obtained. Further, a 10 000-fold molar excess of aldosterone (10 microM) displaced only 34% of the bound 3H-aldosterone to rat serum, preventing the calculation of the IC50 value. Increasing concentrations of aldosterone (3-83 nM) did not displace 3H-corticosterone bound in rat serum to presumably corticosterone binding globulin (CBG). In contrast, inhibition of this binding by 3-83 nM corticosterone was concentration dependent, showing an IC50 value of 10(-8) M. In normal human serum, binding of 3H-aldosterone demonstrated competition by a 100 and 1 000-fold excess of aldosterone. Displacement curves of 3H corticosterone bound to human serum by 1.7-75 nM corticosterone or 0.05-8.8 microM aldosterone yielded IC50 values in the range of 10(-8) M for corticosterone and 10(-6) M for aldosterone. With horse serum, aldosterone's binding affinity was three orders of magnitude lower than that of corticosterone. These studies suggest that in the rat aldosterone was loosely and weakly bound to a high capacity binder, possibly albumin. In agreement with the work of others, in humans aldosterone may be bound to both CBG and albumin. The current data do not substantiate for the presence of specific aldosterone binding proteins in serum.  相似文献   

13.
The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea (+/- 0.4 M KCl) buffers and control buffers (+/- 0.4 M KCl) by chromatography through small columns of Sephadex G-25 or by dialysis at 0-6 degrees C. Equilibrium dissociation constants (Kd) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17 beta-[3H]estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol (Kd = 0.36 +/- 0.09 nM, n = 14) which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity (Kd = 3.45 +/- 0.86 nM, n = 6) to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. However, KCl did help prevent the reduction in binding capacity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
[3H]Triamcinolone acetonide glucocorticoid receptor complexes from human salivary gland adenocarcinoma cells (HSG cells) were shown to be activated with an accompanying decrease in molecular weight in intact cells, as analyzed by gel filtration, DEAE chromatography, the mini-column method and glycerol gradient centrifugation. Glucocorticoid receptor complexes consist of steroid-binding protein (or glucocorticoid receptor) and non-steroid-binding factors such as the heat-shock protein of molecular weight 90,000. To determine whether the steroid-binding protein decreases in molecular weight upon activation, affinity labeling of glucocorticoid receptor in intact cells by incubation with [3H]dexamethasone 21-mesylate, which forms a covalent complex with glucocorticoid receptor, was performed. Analysis by gel filtration and a mini-column method indicated that [3H]dexamethasone 21-mesylate-labeled receptor complexes can be activated under culture conditions at 37 degrees C. SDS-polyacrylamide gel electrophoresis of [3H]dexamethasone 21-mesylate-labeled steroid-binding protein resolved only one specific 92 kDa form. Furthermore, only one specific band at 92 kDa was detected in the nuclear fraction which was extracted from the cells incubated at 37 degrees C. These results suggest that there is no change in the molecular weight of steroid-binding protein of HSG cell glucocorticoid receptor complexes upon activation and that the molecular weight of nuclear-binding receptor does not change, although the molecular weight of activated glucocorticoid receptor complexes does decrease. Triamcinolone acetonide induced an inhibitory effect on DNA synthesis in HSG cells. Dexamethasone 21-mesylate exerted no such effect and blocked the action of triamcinolone acetonide on DNA synthesis. These results suggests that dexamethasone 21-mesylate acts as antagonist of glucocorticoid in HSG cells. The fact that dexamethasone 21-mesylate-labeled receptor complexes could be activated and could bind to DNA or nuclei as well as triamcinolone acetonide-labeled complexes suggests that dexamethasone 21-mesylate-labeled complexes can not induce specific gene expression after their binding to DNA.  相似文献   

15.
We have developed a new ligand-dependent chimeric recombinase (Cre-GRdex) by fusing the site-specific Cre recombinase to the ligand binding domain (LBD) of a mutant human glucocorticoid receptor (GRdex). The synthetic glucocorticoid receptor (GR) ligands dexamethasone, triamcinolone acetonide and RU38486efficiently induce recombinase activity in F9 murine embryonal carcinoma cells expressing constitutively Cre-GRdex. In contrast, no recombinase activity was detected in the absence of ligand or in the presence of the natural GR ligands corticosterone, cortisol or aldosterone. Moreover, physiological concentrations of these natural GR ligands do not affect Cre-GRdexrecombinase activity induced by dexamethasone. Thus, as previously shown using Cre-oestrogen receptor (ER) fusion proteins, Cre-GRdexmight be useful for achieving loxP site-directed mutagenesis in cultured cells and spatio-temporally controlled somatic cell mutagenesis in transgenic mice.  相似文献   

16.
The binding of [3H]aldosterone in the chick intestine cytosol was analyzed in terms of affinity and specificity. In this tissue, aldosterone binds to the mineralocorticosteroid receptor, with a high affinity (Kd approximately 0.3 nM) and low capacity (approximately 50 fmol/mg protein), and to the glucocorticosteroid receptor. The selective labeling of the mineralocorticosteroid receptor was achieved by incubating the cytosol with [3H]aldosterone in the presence of RU 486. This synthetic steroid completely inhibited the binding of [3H]aldosterone to the glucocorticosteroid receptor and did not bind to the mineralocorticosteroid receptor. The oligomeric structure of the mineralocorticosteroid receptor was studied by using BF4, a monoclonal antibody which reacts with the 90-kDa heat shock protein (hsp 90), a nonhormone-binding component of nontransformed steroid receptors. The mineralocorticosteroid receptor sedimented at 8.5 +/- 0.4 S (n = 8) in a 15-40% glycerol gradient. This peak was shifted to 11.2 +/- 0.6 S (n = 5) after incubation with BF4, indicating that, in the cytosol, hsp 90 was associated with the mineralocorticosteroid receptor. Dissociation of the complex was observed on gradients containing 0.4 M KCl, as judged by the absence of displacement by BF4 of the 4.3 +/- 0.4 S (n = 10) peak. The effect of molybdate and tungstate ions, and of dimethyl pimelimidate, an irreversible cross-linking agent, on the stability of the hsp 90-receptor complex was investigated. Complexes recovered in the presence of 20 mM molybdate ions dissociated on gradients containing 0.4 M KCl (5.2 +/- 0.6 S (n = 4), whereas complexes prepared in the presence of 20 mM tungstate ions sedimented at 8.5 +/- 0.4 S (n = 7). Similarly, complexes prepared in the presence of molybdate ions dissociated during high pressure liquid chromatography (HPLC) gel filtration analysis performed in 0.4 M KCl (RS (Stokes radius) = 3.9 +/- 0.5 nm (n = 3) versus 7.3 +/- 0.2 nm (n = 3) in the presence of 20 mM molybdate ions), whereas complexes prepared in the presence of tungstate ions did not dissociate (RS = 6.9 +/- 0.2 nm (n = 3]. As observed for the tungstate-stabilized receptor, the cross-linked receptor dissociated neither on gradient containing 0.4 M KCl (9.5 +/- 0.1 S (n = 3] nor during HPLC performed in 0.4 M KCl (RS = 6.5 +/- 0.3 (n = 4]. Furthermore, the cross-linked receptor was more resistant to the inactivating effect of urea on aldosterone binding than the noncross-linked receptor prepared in the presence of either molybdate or tungstate ions.  相似文献   

17.
1. The SDS-disc electrophoretical analysis of wheat flour globulin revealed that upon incubation with “Kansui,” a mixture of alkali carbonates, one (No. 9) of the components disappeared and another component (No. 11) increased significantly whose molecular weight was estimated to be more than one million. Incubation of flour globulin with “Kansui” resulted in decrease of SH groups of the globulin.

2. However, a mild reduction of the globulin incubated with “Kansui” caused reappearance of component No. 9 and a decrease of component No. 11.

3. Previous treatment of flour globulin with PCMB or AN completely inhibited such effects of “Kansui” as described above.

4. A fraction containing component No. 9 of flour globulin which was the main component responsible to polymerization by “Kansui,” was isolated from “Kansui”-treated globulin by chromatography on columns of Sephadex G200 and Sepharose 4B.

5. The component protein thus isolated showed a typical phenomenon of reversibility in depolymerization to the original component corresponding to No. 9 component by chemical reduction and polymerization to a component corresponding to No. 9 at alkaline sides.

  相似文献   

18.
Studies of the reversible binding of [3H]cortisol by rat gastrocnemius muscle cytoplasm in vitro reveal specific binding in the 27,000 times g supernatant fraction at 0 degrees. The [3H]cortisol-binding molecule had an apparant Kd value of 1.7 times 10-7 M and the number of binding sites was 0.99 pmol per mg of cytosol protein. Only a single class of [3H]cortisol-binding sites could be detected, whose protein nature was suggested by its susceptibility to nagarse. The [3H]cortisol-protein complex sedimented at similar to 4 S in a 5 to 20% sucrose gradient either in the presence or absence of 0.3 M KCl. Binding increased more than 2-fold in adrenalectomized rats and was markedly reduced in the muscle of rats pretreated with cortisol. In contrast to the binding of [3H]dexamethasone and [3H]triamcinolone acetonide to receptor proteins in muscle, no correlation was found between the ability of various steroids to complete wtth [3H]cortisol binding and their glucocorticoid potency: [3H]cortisol binding was inhibited by a 1000-fold higher concentration of unlabeled cortisol and progesterone but not by dexamethasone or triamcinolone acetonide. It is therefore suggested that the [3H]cortisol-binding reaction is not directly involved in the biological effects of all potent glucocorticoids in skeletal muscle. The [3H]cortisol-binding protein in muscle cytosol could not be unequivocally distinguished from rat plasma corticosteroid-binding globulin, because both had similar steroid specificity and temperature stability, were not markedly affected by--SH reagents, and displayed similar sedimentation properties.  相似文献   

19.
A carbohydrate-containing fraction was extracted from the trypanosomatid Crithidia fasciculata by a phenol-water procedure. Ion-exchange chromatography separated this fraction into three components: a polysaccharide which was not retained on the column; RNA which eluted upon addition of salt; and, another polysaccharide which eluted upon addition of detergent. The unretained fraction was shown to be composed solely of d-mannose. The mannan, which was heterodisperse on Sephadex G-100, had an average molecular weight of approx. 14 000 as based on analysis of reducing groups. The detergent-eluted material yielded arabinose and galactose upon acid hydrolysis. The arabinogalactan was excluded from Sephadex G-100 and Sephacryl S-200 molecular sieve columns, suggesting a molecular weight ≥ 200 000. Cell fractionation studies showed the bulk of extractable polysaccharide was associated with a particulate fraction. Further determination of the cellular localization of the polysaccharide was accomplished by employing a specific antiserum prepared from rabbits immunized with the polysaccharide extract. The cell surface localization of the arabinogalactan was demonstrated by cell agglutination studies as well as immunocytochemical techniques using fluorescein and ferritin conjugated antibodies.  相似文献   

20.
《Analytical biochemistry》1986,155(2):358-364
The chymotrypic proteinase “chymase” has been purified to apparent homogeneity from human skin. Our procedure differs from previously published partial purifications in that it does not involve affinity chromatography, most of the steps are carried out in 2 m KCl which stabilizes the enzyme, detergent is used to protect the enzyme in low-ionic-strength media, and troublesome concentration steps are avoided by using very small columns of high-capacity exchangers. The high-salt skin extract is applied successively to columns of hydroxyapatite, copper chelate Sepharose, and Sephadex G-100 in 2 m KCl. After dialysis against a zwitterionic detergent, the enzyme is adsorbed onto a 0.4-ml column of CM-Sepharose. An alkaline wash removes the remaining contaminants from the highly cationic enzyme, which is then eluted with 1 m KCl in a final volume of 2 ml. Sodium dodecyl sulfate electrophoresis reveals a single diffuse band of Mr 30,000. Recoveries range from 20 to 40% with yields of 0.2 to 0.4 mg of enzyme from 200 g of skin. Specific activities vary from 600 to 1400 units/mg for the hydrolysis of acetyltyrosine ethyl ester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号