首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enzymes of the flavonoid glycoside pathway were specifically induced upon irradiation of a 10-day-old, dark-grown cell suspension culture of Petroselinum hortense Hoffm. with ultraviolet light. The curves for the activity changes of a first sequence of three enzymes (group I) revealed only small, but significant, differences. Sharp peaks in these enzyme activities were observed at about 17, 22, and 23 h after the onset of the irradiation. The apparent half-lives during the subsequent periods of decline ranged, in the same order, from about 10 to 15 and 17 h. No significant differences were found for the lag periods preceding the increases in the three enzyme activities. The possibility is discussed that the slight differences in the patterns of the light-induced activity changes are mainly due to different rates of degradation of the enzymes, suggesting an otherwise largely interpendent regulation. The patterns of the activity changes of four enzymes of the second sequence (group II) differed greatly from those observed for group I, but were again similar to one another. Thus, the two groups of enzymes appear to be regulated differently, despite their concomitant induction. A sigmoidal curve for the accumulation of the flavonoid glycosides was obtained upon the induction of the enzymes. This curve corresponded closely to that derived by integration of the curve for the activity changes of the first enzyme of group I, phenylalanine ammonia-lyase. It is concluded that this enzyme might be rate-limiting for the entire pathway.  相似文献   

2.

Background  

17alpha-hydroxylase/17, 20-lyase encoded by CYP17 is the key enzyme in androgen biosynthesis pathway. Previous studies demonstrated the accentuation of the enzyme in patients with polycystic ovary syndrome (PCOS) was the most important mechanism of androgen excess. We chose CYP17 as the therapeutic target, trying to suppress the activity of 17alpha-hydroxylase/17, 20-lyase and inhibit androgen biosynthesis by silencing the expression of CYP17 in the rat ovary.  相似文献   

3.
Oviduct adenylate cyclase activity of the quail was measured by radiochemical analysis following different hormonal treatments. A single injection of estradiol benzoate (EB) to immature female quails resulted in a prereplicative surge of adenylate cyclase activity. A second surge of enzyme activity was observed during the proliferative phase induced by EB. Estradiol-17 alpha, estrone, estriol and testosterone were ineffective. Tamoxifen completely inhibits the growth-promoting effect of EB and the second surge of adenylate cyclase activity but does not inhibit the prereplicative increase of enzyme activity. This prereplicative increase of adenylate cyclase activity was also observed, even in the absence of increased plasma estradiol, when estradiol-17 beta (E2) was perfused through the hepatic portal vein. Moreover, E2 had no effect on enzyme activity when added directly to the oviduct homogenate preparation, at concentrations ranging from 10(-9) to 10(-7) M. In response to progesterone injection, oviduct adenylate cyclase activity followed a different pattern, beginning its increase after 3 h and remaining elevated up to 24 h. The activation by estradiol was independent of the presence of guanylylimidodiphosphate. Moreover, the enzyme was more sensitive to forskolin at submaximal concentration in estradiol treated birds than in control. These results demonstrate that transient activation of adenylate cyclase at the early stages of the action of estradiol does not occur through the classic nuclear receptor-gene activation pathway or a membrane receptor mediated process, but involves an indirect pathway, yet to be defined.  相似文献   

4.
Catabolism of uracil and thymine in Burkholderia cepacia ATCC 25416 was shown to occur using a reductive pathway. The first pathway enzyme, dihydropyrimidine dehydrogenase, was shown to utilize NADPH as its nicotinamide cofactor. Growth of B. cepacia on pyrimidine bases as the nitrogen source instead of on ammonium sulfate increased dehydrogenase activity at least 32-fold. The second and third reductive pathway enzymes, dihydropyrimidinase and N-carbamoyl-β-alanine amidohydrolase, respectively, exhibited activities elevated more than 21-fold when pyrimidine or dihydropyrimidine bases served as the nitrogen source rather than ammonium sulfate. The pathway enzyme activities were induced after growth on 5-methylcytosine. Received: 17 January 1997 / Accepted: 5 May 1997  相似文献   

5.
Estrogens play a crucial role in multiple functions of the brain and the proper balance of inactive estrone and active estradiol-17beta might be very important for their cerebral effects. The interconversion of estrone and estradiol-17beta in target tissues is known to be catalysed by a number of human 17beta-hydroxysteroid dehydrogenase (17beta-HSD) isoforms. The present study shows that enzyme catalysed interconversion of estrone and estradiol-17beta occurs in the human temporal lobe. The oxidative cerebral pathway preferred estradiol-17beta to Delta(5)-androstenediol and testosterone, whereas the reductive pathway preferred dehydroepiandrosterone (DHEA) to Delta(4)-androstenedione and estrone. An allosteric Hill kinetic for NAD-dependent oxidation of estradiol-17beta was observed, whereas a typical Michaelis-Menten kinetic was shown for NADPH-dependent reduction of estrone. Investigations of the interconversion of estrogens in cerebral neocortex (CX) and subcortical white matter (SC) preparations of brain tissue from 12 women and 10 men revealed no sex-differences, but provide striking evidence for the presence of at least one oxidative membrane-associated 17beta-HSD and one cytosolic enzyme that catalyses both the reductive and the oxidative pathway. Membrane-associated oxidation of estradiol-17beta was shown to be significantly higher in CX than in SC (P<0.05), whereas the cytosolic enzyme activities were significantly higher in SC than in CX (P<0.0005). Finally, real-time RT-PCR analyses revealed that besides 17beta-HSD types 4 and 5 also the isozymes type 7, 8, 10 and 11 show substantial expression in the human temporal lobe. The characteristics of the isozymes lead us to the conclusion that cytosolic 17beta-HSD type 5 is the best candidate for the observed cytosolic enzyme activities, whereas the data gave no clear answer to the question, which enzyme is responsible for the membrane-associated oxidation of estradiol-17beta. In conclusion, the study strongly suggests that different cell types and different isozymes are involved in the cerebral interconversion of estrogens, which might play a pivotal role in maintaining the functions of the central nervous system.  相似文献   

6.
The presence of acyl-CoA synthetase (EC 6.2.1.3) in peroxisomes and the subcellular distribution of beta-oxidation enzymes in human liver were investigated by using a single-step fractionation method of whole liver homogenates in metrizamide continuous density gradients and a novel procedure of computer analysis of results. Peroxisomes were found to contain 16% of the liver palmitoyl-CoA synthetase activity, and 21% and 60% of the enzyme activity was localized in mitochondria and microsomal fractions respectively. Fatty acyl-CoA oxidase was localized exclusively in peroxisomes, confirming previous results. Human liver peroxisomes were found to contribute 13%, 17% and 11% of the liver activities of crotonase, beta-hydroxyacyl-CoA dehydrogenase and thiolase respectively. The absolute activities found in peroxisomes for the enzymes investigated suggest that in human liver fatty acyl-CoA oxidase is the rate-limiting enzyme of the peroxisomal beta-oxidation pathway, when palmitic acid is the substrate.  相似文献   

7.
Secretion of cellobiase occurred in a brefeldin A (BFA) uninhibited manner in the filamentous fungus Termitomyces clypeatus. Fluorescence confocal microscopy revealed that application of the drug at a concentration of 50 microgram/ml caused arrest of Spitzenkorper assembly at the hyphal tip. This resulted in greater than 30% inhibition of total protein secretion in the culture medium. However, the cellobiase titer increased by 17%, and an additional 13% was localized in the vacuolar fraction en route secretion. The secretory vacuoles formed in the presence of the drug were also found to be bigger (68 nm) than those in the control cultures (40 nm). The enzyme secreted in the presence and absence of BFA revealed a single activity band in both cases in native PAGE and had similar molecular masses (approx. 120 kDa) in SDS-PAGE. The BFA enzyme retained 72% of native glycosylation. It also exhibited a higher stability and retained 98% activity at 50°C, 93.3% activity at pH 9, 63.64% activity in the presence of 1M guanidium hydrochloride, and 50% activity at a glucose concentration of 10 mg/ml in comparison to 68% activity, 75% activity, 36% activity, and 19% activity for the control enzyme, respectively. The observations collectively aimed at the operation of an alternative secretory pathway, distinct from the target of brefeldin A, which bypassed the Golgi apparatus, but still was able to deliver the cargo to the vacuoles for secretion. This can be utilized in selectively enhancing the yield and stability of glycosidases for a successful industrial recipe.  相似文献   

8.
The interconversion of estrone (E1) and 17β-estradiol (E2), androstenedione (4-ene-dione) and testosterone (T), as well as dehydroepiandrosterone and androst-5-ene-3β,17β-diol is catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD). The enzyme 17β-HSD thus plays an essential role in the formation of all active androgens and estrogens in gonadal as well as extragonadal tissues. The present study investigates the tissue distribution of 17β-HSD activity in the male and female rat as well as in some human tissues and the distribution of 17β-HSD mRNA in some human tissues. Enzymatic activity was measured using 14C-labeled E1, E2, 4-ene-dione and T as substrates. Such enzymatic activity was demonstrated in all 17 rat tissues examined for both androgenic and estrogenic substrates. While the liver had the highestlevel of 17β-HSD activity, low but significant levels of E2 as well as T formation were found in rat brain, heart, pancreas and thymus. The oxidative pathway (E2→E1, T→4-ene-dione) was favored over the reverse reaction in almost all rat tissues while in the human, almost equal rates were found in most of the 15 tissues examined. The widespread distribution of 17β-HSD in rat and human tissues clearly indicates the importance of this enzyme in peripheral sex steroid formation or intracrinology.  相似文献   

9.
To test the hypothesis that the hyperandrogenemia associated with polycystic ovary syndrome (PCOS) results from an intrinsic abnormality in ovarian theca cell steroidogenesis, we examined steroid hormone production, steroidogenic enzyme activity, and mRNA expression in normal and PCOS theca cells propagated in long-term culture. Progesterone (P4), 17alpha-hydroxyprogesterone (17OHP4), and testosterone (T) production per cell were markedly increased in PCOS theca cell cultures. Moreover, basal and forskolin-stimulated pregnenolone, P4, and dehydroepiandrosterone metabolism were increased dramatically in PCOS theca cells. PCOS theca cells were capable of substantial metabolism of precursors into T, reflecting expression of an androgenic 17beta-hydroxysteroid dehydrogenase. Forskolin-stimulated cholesterol side chain cleavage enzyme (CYP11A) and 17alpha-hydroxylase/17,20-desmolase (CYP17) expression were augmented in PCOS theca cells compared with normal cells, whereas no differences were found in steroidogenic acute regulatory protein mRNA expression. Collectively, these observations establish that increased CYP11A and CYP17 mRNA expression, as well as increased CYP17, 3beta-hydroxysteroid dehydrogenase, and 17beta-hydroxysteroid dehydrogenase enzyme activity per theca cell, and consequently increased production of P4, 17OHP4, and T, are stable properties of PCOS theca cells. These findings are consistent with the notion that there is an intrinsic alteration in the steroidogenic activity of PCOS thecal cells that encompasses multiple steps in the biosynthetic pathway.  相似文献   

10.
Abstract: Human immunodeficiency virus (HIV)-1-associated dementia is a frequent consequence of HIV infection and is associated with neuronal deficits. Increased concentrations of the kynurenine pathway metabolites 3-hydroxykynurenine (3-HK) and quinolinic acid (QA) may contribute to this neuronal damage. We measured 3-HK concentrations and the activity of its catabolising enzyme, 3-hydroxykynureninase, in postmortem brain tissue from eight controls and 32 HIV-positive patients, including a group that exhibited dementia. 3-HK concentrations were significantly increased (over threefold) in the HIV-positive group when compared with controls. This increase was greater in those patients with dementia, but it was still apparent in the nondemented cases. 3-Hydroxykynureninase activity was significantly increased in the HIV-infected group compared with the control values. The effect was apparent in both nondementia and dementia cases, although the latter showed a slightly greater increase. The 3-HK content increase is thus unrelated to a reduction in activity of this enzyme and is likely to reflect an overall increase in the kynurenic metabolic pathway. Elevated levels of the neurotoxin 3-HK may contribute to the neuronal deficits underlying HIV-associated dementia.  相似文献   

11.
Testis, adrenal, ovary and placenta contain a microsomal cytochrome P-450 that is capable of converting progesterone to androstenedione and pregnenolone to dehydroepi-androsterone. This conversion requires 17-hydroxylation followed by C17,20-lyase activity which are both catalyzed by this one protein. Gene cloning and Northern blotting reveal that, at least in man, the same gene is responsible for both testicular and adrenal enzymes. The enzyme was first purified from neonatal pig testis. Both the testicular and adrenal enzymes show a marked preference for the 5-ene substrate (pregnenolone) in keeping with the extensive use of the 5-ene pathway in that species. Affinity alkylation with 17-bromoacetoxyprogesterone reveals a conserved cysteine at the active site of the enzyme and confirms the conclusion that a single enzyme catalyzes both reactions. Under some circumstances the enzyme catalyzes only 17-hydroxylation to permit the formation of the C21 steroid cortisol. The regulation of lyase activity, i.e. the determination of the extent to which the second activity is expressed, results from the availability of P-450 reductase. No doubt the greater concentration of this protein in testicular as opposed to adrenal microsomes (× 3.5) is responsible for the production of androgens in the testis and cortisol in the adrenal. Testicular cytochrome b5 also specifically stimulates lyase activity and also causes the porcine enzyme to catalyze a new reaction, i.e. Δ16-synthetase, resulting in synthesis of the important pheromone androsta-4,16-dien-3 one from progesterone.  相似文献   

12.
Hsu CC  Tsai SJ  Huang YL  Huang BM 《FEBS letters》2003,543(1-3):140-143
We demonstrate the mechanism by which Cordyceps sinensis (CS) mycelium regulates Leydig cell steroidogenesis. Mouse Leydig cells were treated with forskolin, H89, phorbol 12-myristate 13-acetate, staurosporine, or steroidogenic enzyme precursors with or without 3 mg/ml CS; then testosterone production was determined. H89, but not phorbol 12-myristate 13-acetate or staurosporine, decreased CS-treated Leydig cell steroidogenesis. CS inhibited Leydig cell steroidogenesis by suppressing the activity of P450scc enzyme, but not 3beta-hydroxysteroid dehydrogenase, 17alpha-hydroxylase, 20alpha-hydroxylase, or 17beta-hydroxysteroid dehydrogenase enzymes. Thus, CS activated the cAMP-protein kinase A signal pathway, but not protein kinase C, and attenuated P45scc enzyme activity to reduce human chorionic gonadotropin-stimulated steroidogenesis in purified mouse Leydig cells.  相似文献   

13.
Isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IPP isomerase) is an enzyme in the isoprenoid biosynthetic pathway which catalyzes the interconversion of the primary five-carbon homoallylic and allylic diphosphate building blocks. We report a substantially improved procedure for purification of this enzyme from Saccharomyces cerevisiae. An amino-terminal sequence (35 amino acids) was obtained from a highly purified preparation of IPP isomerase. Oligonucleotide probes based on the protein sequence were used to isolate the structural gene encoding IPP isomerase from a yeast lambda library. The cloned gene encodes a 33,350-dalton polypeptide of 288 amino acids. A 3.5-kilobase EcoRI fragment containing the gene was subcloned into the yeast shuttle vector YRp17. Upon transformation with plasmids containing the insert, a 5-6-fold increase in IPP isomerase activity was seen in transformed cells relative to YRp17 controls, confirming the identity of the cloned gene. This is the first reported isolation of the gene for IPP isomerase.  相似文献   

14.
15.
Regulation of Tryptophan Pyrrolase Activity in Xanthomonas pruni   总被引:3,自引:2,他引:1       下载免费PDF全文
Tryptophan pyrrolase was studied in partially purified extracts of Xanthomonas pruni. The dialyzed enzyme required both heme and ascorbate for maximal activity. Other reducing agents were able to substitute for ascorbate. Protoporphyrin competed with heme for the enzyme, suggesting that the native enzyme is a hemoprotein. The enzyme exhibited sigmoid saturation kinetics. Reduced nicotinamide adenine dinucleotide (NADH), reduced nicotinamide adenine dinucleotide phosphate (NADPH), nicotinic acid mononucleotide, and anthranilic acid enhanced the sigmoid kinetics and presumably bound to allosteric sites on the enzyme. The sigmoid kinetics were diminished in the presence of alpha-methyltryptophan. NAD, NADP, nicotinic acid, nicotinamide, nicotinamide mononucleotide, and several other related compounds were without effect on the activity of the enzyme. These data indicate that the activity of the enzyme is under feedback regulation by the ultimate end products of the pathway leading to NAD biosynthesis, as well as by certain intermediates of this pathway.  相似文献   

16.
In Bufo arenarum, the biosynthesis of testosterone and 5alpha-dihydrotestosterone takes place through a complete 5-ene pathway, 5-androsten-3beta,17beta-diol being the immediate precursor of testosterone. Besides androgens, testes are able to synthesise 5alpha-pregnan-3,20-dione and several 3alpha and 20alpha reduced derivatives. During the breeding season, steroid biosynthesis turns from androgen to C21-steroid production. As a consequence, the cytochrome P450 17-hydroxylase, C17,20-lyase (CypP450(c17)) could be a key enzyme in that metabolic shift. The present study demonstrates that in testes of B. arenarum, CypP450(c17) co-localises with glucose-6-phosphatase in the microsomal fraction. CypP450(c17) possesses more affinity for pregnenolone than for progesterone in both non-reproductive (Km = 43.76 +/- 4.63 nM and 2,170 +/- 630 nM, respectively) and reproductive (Km = 37.46 +/- 4.19 nM and 3,060 +/- 190 nM, respectively) seasons. These results could explain the predominance of the 5-ene pathway for testosterone biosynthesis. Toad CypP450(c17) activity is higher in the non-reproductive period than the reproductive period, suggesting that this enzyme is an important factor in toad steroidogenic changes. Animals in reproductive conditions showed a significant reduction in circulating androgens. This is in agreement with the decrease in Vmax of cytochrome P450 17-hydroxylase activity, enhancing the physiological relevance of these in vitro results.  相似文献   

17.
1. The 17beta-hydroxy steroid dehydrogenase was solubilized during haemolysis of erythrocytes and was isolated from the membrane-free haemolysate. Membrane preparations isolated in different ways did not contain 17beta-hydroxy steroid dehydrogenase activity. The 17beta-hydroxy steroid dehydrogenase activity in the haemolysate was concentrated by repeated ammonium sulphate precipitation and gel filtration on Sephadex G-150. The 17beta-hydroxy steroid dehydrogenase activity of the purified preparation per unit weight of protein was 350-3000 times higher than the activity of the crude erythrocyte haemolysate. The 20alpha-hydroxy steroid dehydrogenase activity was lost during this purification procedure. 2. The 17beta-hydroxy steroid dehydrogenase was NADP-dependent and had a pH optimum for conversion of testosterone between 8.5 and 10. For the molecular weight of the enzyme a value of 64000 was calculated from Sephadex chromatography results. 3. p-Chloromercuribenzoate inhibited the enzymic activity. The oxidative activity of the enzyme for the 17beta-hydroxyl group was only partly inhibited when a large excess of 17-oxo steroids was added. The catalysing activity of the enzyme was influenced by the NADP(+)/NADPH ratio. The oxidation of the 17beta-hydroxyl group in the presence of NADP(+) proceeded faster than the reduction of the 17-oxo group with NADPH. When both reduced and oxidized cofactors were present the oxidation of the 17beta-hydroxyl group was inhibited to a considerable extent. 4. The enzyme had a broad substrate specificity and not only catalysed the conversion of androstanes with a 17beta-hydroxyl group, or 17-oxo group, but also the conversion oestradiolleft arrow over right arrowoestrone. In addition the steroid conjugates dehydroepiandrosterone sulphate and oestrone sulphate were also converted. There were no indications that more than one 17beta-hydroxy steroid dehydrogenase was present in the partially purified preparation.  相似文献   

18.
We investigated the transduction pathway mediated by Zn and 17beta-estradiol in isolated mantle/gonad cells of the mussel Mytilus galloprovincialis. Both the essential metal Zn, and the estrogen 17beta-estradiol, caused an increase in intracellular pH (pHi) of isolated mantle/gonad cells of the mussel M. galloprovincialis, thus indicating the activation of the Na+/H+ exchanger (NHE). The observed effect was inhibited by EIPA (20 nM), a specific NHE inhibitor, thus verifying NHE activation. Protein kinase C (PKC) also seemed to play an activating role in zinc and 17beta-estradiol effects on NHE and PK activity. In addition, the glycolytic enzyme pyruvate kinase (PK) was increased after zinc, while it was decreased after 17beta-estradiol treatment. It is noteworthy that, both the latter effects were reversed in the presence of EIPA, indicating the involvement of NHE in the signaling mechanism. cAMP seems to participate in the signaling mechanism induced by Zn but not to that induced by 17beta-estradiol. The potential implication of the heavy metal and 17beta-estradiol on the reproductive activity of the marine animals is discussed.  相似文献   

19.
In the yeast, Saccharomyces cerevisiae, two ubiquitin-like modifications, Apg12 conjugation with Apg5 and Apg8 lipidation with phosphatidylethanolamine, are essential for autophagy and the cytoplasm-to-vacuole transport of aminopeptidase I (Cvt pathway). As a unique E1-like enzyme, Apg7 activates two modifiers (Apg12 and Apg8) in an ATP-dependent manner and, for this activity, the carboxyl terminal 40 amino acids are essential. For a better understanding of the function of the carboxyl terminus of Apg7, we performed a sequential deletion of the region. A mutant expressing Apg7DeltaC17 protein, which lacks the carboxyl 17 amino acids of Apg7, showed defects in both the Cvt pathway and autophagy. Apg8 lipidation is inhibited in the mutant, while Apg12 conjugation occurs normally. A mutant expressing Apg7DeltaC13 protein showed a defect in the Cvt pathway, but not autophagy, suggesting that the activity of Apg7 for Apg8 lipidation is more essential for the Cvt pathway than for autophagy. Mutant Apg7DeltaC17 protein is still able to interact with Apg8, Apg12 and Apg3, and forms a homodimer, indicating that the deletion of the carboxyl terminal 17 amino acids has little effect on these interactions and Apg7 dimerization. These results suggest that the carboxyl terminal 17 amino acids of Apg7 play a specific role in Apg8 lipidation indispensable for the Cvt pathway and autophagy.  相似文献   

20.
It has been proposed that in some anaerobic facultatively autotrophic bacteria the acetyl CoA/CO dehydrogenase pathway is operating both in the reductive and in the oxidative direction, depending on the growth conditions. One of these anaerobes, the Gram-negative sulfate-reducing cubacterium Desulfobacterium autotrophicum, was examined for enzymes of the proposed pathway. All the required enzyme activities were present in sufficient amounts both in autotrophically and in heterotrophically grown cells, provided that the cellular tetrahydropterin rather than tetrahydrofolate was used as cosubstrate in some of the enzyme assays. The question arises whether two sets of enzymes are operating in the reductive and oxidative direction, respectively. The key enzyme of this pathway, CO dehydrogenase, which was reasonably oxygen stable, was analysed by native polyacrylamide gel electrophoresis and anaerobic activity staining. Extracts from heterotrophically grown cells exhibited five enzyme activity bands. Extracts from autotrophically grown cells showed the same pattern but an additional activity band appeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号