首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nutritional quality of crop plants is determined by their content in essential amino acids provided in food for humans or in feed for monogastric animals. Amino acid composition of crop–based diets can be improved via manipulation of the properties of key enzymes of amino acid biosynthetic pathways by mutation and transformation. We focused on the aspartate-derived amino acid pathway producing four essential amino acids: lysine, threonine, isoleucine and methionine. Genes encoding aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS) that operate as key genes of the aspartate pathway have been cloned from Arabidopsis. Genetic and molecular studies revealed that at least five different ak genes are represented. Some of them were characterized in terms of gene and promoter structure, developmental expression and regulatory properties. In the case of dhdps, two quite identical genes have been identified and characterized at expression level. Mutated genes encoding a fully feedback-insensitive form of the DHDPS enzyme were obtained from Nicotiana sylvestris and Arabidopsis. Several chimeric constructs harbouring this mutated allele under the control of constitutive or seed-specific promoters were transferred via Agrobacterium or biolistics in various plant species. In all cases, lines with significant increase of free lysine content were obtained in vegetative organs, but the impact of the transgene in seeds is limited due to the presence of an active catabolic enzyme, lysine ketoreductase. These results show that, although dealing with a complex, highly regulated pathway, the overexpression of a single gene encoding a feedback-insensitive form of the key enzyme DHDPS exerts a significant effect on the carbon flux through the aspartate pathway towards lysine production.  相似文献   

2.
Agrobacterium tumefaciens is a Gram‐negative soil‐borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti‐Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo‐tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso‐diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo‐tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease. Proteins 2014; 82:1869–1883. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
By applying a mutagenesis/selection procedure to obtain resistance to a lysine analog, S-(2-aminoethyl)l -cysteine (AEC), a lysine overproducing mutant in Nicotiana sylvestris was isolated. Amino acid analyses performed throughout plant development and of different organs of the N. sylvestris RAEC-1 mutant, revealed a developmental-dependent accumulation of free lysine. Lysine biosynthesis in the RAEC-1 mutant was enhanced due to a lysine feedback-desensitized dihydrodipicolinate synthase (DHDPS). Several molecular approaches were undertaken to identify the nucleotide change in the dhdps-r1 gene, the mutated gene coding for the lysine-desensitized enzyme. The enzyme was purified from wild-type plants for amino end microsequencing and 10 amino acids were identified. Using dicotyledon dhdps probes, a genomic fragment was cloned from an enriched library of DNA from the homozygote RAEC-1 mutant plant. A dhdps cDNA, putatively full-length, was isolated from a tobacco cDNA library. Nucleotide sequence analyses confirmed the presence of the previously identified amino end preceded by a chloroplast transit peptide sequence. Nucleotide sequence comparisons, enzymatic and immunological analyses revealed that the tobacco cDNA corresponds to a normal type of DHDPS, lysine feedback-regulated, and the genomic fragment to the mutated DHDPS, insensitive to lysine inhibition. Functional complementation of a DHDPS-deficient Escherichia coli strain was used as an expression system. Reconstruction between the cDNA and genomic fragment led to the production of a cDNA producing an insensitive form of DHDPS. Amino acid sequence comparisons pointed out, at position 104 from the first amino acid of the mature protein, the substitution of Asn to lleu which corresponds to a dinucleotide mutation. This change is unique to the dhdps-r1 gene when compared with the wild-type sequence. The identification of the nucleotide and amino acid change of the lysine-desensitized DHDPS from RAEC-1 plant opens new perspectives for the improvement of the nutritional value of crops and possibly to develop a new plant selectable marker.  相似文献   

4.
Dihydrodipicolinate synthase (DHDPS) catalyses the first reaction of the (S)-lysine biosynthesis pathway in bacteria and plants. The hypothetical gene for dihydrodipicolinate synthase (dapA) of Thermoanaerobacter tengcongensis was found in a cluster containing several genes of the diaminopimelate lysine–synthesis pathway. The dapA gene was cloned in Escherichia coli, DHDPS was subsequently produced and purified to homogeneity. The T. tengcongensis DHDPS was found to be thermostable (T 0.5 = 3 h at 90°C). The specific condensation of pyruvate and (S)-aspartate-β -semialdehyde was catalyzed optimally at 80°C at pH 8.0. Enzyme kinetics were determined at 60°C, as close as possible to in vivo conditions. The established kinetic parameters were in the same range as for example E. coli dihydrodipicolinate synthase. The specific activity of the T. tengcongensis DHDPS was relatively high even at 30°C. Like most dihydrodipicolinate synthases known at present, the DHDPS of T. tengcongensis seems to be a tetramer. A structural model reveals that the active site is well conserved. The binding site of the allosteric inhibitor lysine appears not to be conserved, which agrees with the fact that the DHDPS of T. tengcongensis is not inhibited by lysine under physiological conditions.  相似文献   

5.
The first enzyme of the lysine-biosynthesis pathway, dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) has been purified and characterized inNicotiana sylvestris Speggazini et Comes. A purification scheme was developed for the native DHDPS that subsequently led to the purification to homogeneity of its subunits using two-dimensional gel electrophoresis. Subsequent elution of the purified polypeptide has opened the way for the production of rabbit polyclonal anti-DHDPS sera. The molecular weight of the enzyme was determined to be 164000 daltons (Da) by an electrophoretic method. By labeling with [14C]pyruvate, the enzyme was shown to be composed of four identical subunits of 38500 Da. Pyruvate acts as a stabilizing agent and contributes to the preservation of the tetrameric structure of the enzyme. The enzyme ofN. sylvestris is strongly inhibited by lysine with anI 0.5 of 15 μM; S-(2-aminoethyl)L-cysteine and γ-hydroxylysine, two lysine analogs, were found to be only weak inhibitors. An analog of pyruvate, 2-oxobutyrate, competitively inhibited the enzyme and was found to act at the level of the pyruvate-binding site. Dihydrodipicolinate synthase was localized in the chloroplast and identified as a soluble stromal enzyme by enzymatic and immunological methods. Its properties are compared with those known for other plant and bacterial DHDPS enzymes.  相似文献   

6.
In higher plants the essential amino acids lysine, threonine, methionine and isoleucine are synthesised through a branched pathway starting from aspartate. The key enzyme of lysine biosynthesis in this pathway—dihydrodipicolinate synthase (DHDPS)—is feedback-inhibited by lysine. The dhdps-r1 gene from a mutant Nicotiana sylvestris, which encodes a DHDPS enzyme insensitive to feedback inhibition, was used to improve the lysine content in pigeonpea seeds. The dhdps-r1 coding region driven by a phaseolin or an Arabidopsis 2S2 promoter was successfully overexpressed in the seeds of pigeonpea by using Agrobacterium transformation and particle bombardment. In 11 lines analysed, a 2- to 6-fold enhanced DHDPS activity in immature seeds at a late stage of maturation was found in comparison to wild type. The overexpression of dhdps-r1 led to an enhanced content of free lysine in the seeds of pigeonpea from 1.6 to 8.5 times compared with wild type. However, this was not reflected in an increase in total seed lysine content. This might be explained by a temporal discrepancy between maximal expression of dhdps-r1 and the rate of amino acid incorporation into storage proteins. Assays of the lysine degradative enzyme lysine-ketoglutarate reductase in these seeds showed no co-ordinated regulation of lysine biosynthesis and catabolism during seed maturation. All transgenic plants were fertile and produced morphologically normal seeds.  相似文献   

7.
8.
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.  相似文献   

9.
Dihydrodipicolinate synthase (DHDPS, E.C.4.2.1.52) catalyzes the first committed step in the lysine biosynthetic pathway: the condensation of (S)-aspartate semialdehyde and pyruvate to form (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, we report the crystal structure of DHDPS from a hyperthermophilic bacterium Aquifex aeolicus (AqDHDPS). l-Lysine is used as an important animal feed additive where the production is at the level of 1.5 million tons per year. The biotechnological manufacture of lysine has been going for more than 50 years which includes over synthesis and reverse engineering of DHDPS. AqDHDPS revealed a unique disulfide linkage which is not conserved in the homologues of AqDHDPS. In silico mutation of C139A and intermolecular ion-pair residues and the subsequent molecular dynamics simulation of the mutants showed that these residues are critical for the stability of AqDHDPS tetramer. MD simulations of AqDHDPS at three different temperatures (303, 363 and 393 K) revealed that the molecule is stable at 363 K. Thus, this structural and in silico study of AqDHDPS likely provides additional details towards the rational and structure-based design of hyper-l-lysine producing bacterial strains.  相似文献   

10.
Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) catalyzes the first committed reaction of l-lysine biosynthesis in bacteria and plants and is allosterically regulated by l-lysine. In previous studies, DHDPSs from different species were proved to have different sensitivity to l-lysine inhibition. In this study, we investigated the key determinants of feedback regulation between two industrially important DHDPSs, the l-lysine-sensitive DHDPS from Escherichia coli and l-lysine-insensitive DHDPS from Corynebacterium glutamicum, by sequence and structure comparisons and site-directed mutation. Feedback inhibition of E. coli DHDPS was successfully alleviated after substitution of the residues around the inhibitor’s binding sites with those of C. glutamicum DHDPS. Interestingly, mutagenesis of the lysine binding sites of C. glutamicum DHDPS according to E. coli DHDPS did not recover the expected feedback inhibition but an activation of DHDPS by l-lysine, probably due to differences in the allosteic signal transduction in the DHDPS of these two organisms. Overexpression of l-lysine-insensitive E. coli DHDPS mutants in E. coli MG1655 resulted in an improvement of l-lysine production yield by 46 %.  相似文献   

11.

Background  

Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome.  相似文献   

12.
Dihydrodipicolinate synthase (DHDPS; EC4.2.1.52) catalyses the first reaction of lysine biosynthesis in plants and bacteria. Plant DHDPS enzymes are strongly inhibited by lysine (I0.5 approximately 10 microM), whereas the bacterial enzymes are less (50-fold) or insensitive to lysine inhibition. We found that plant dhdps sequences expressing lysine-sensitive DHDPS enzymes are unable to complement a bacterial auxotroph, although a functional plant DHDPS enzyme is formed. As a consequence of this, plant dhdps cDNA clones which have been isolated through functional complementation using the DHDPS-deficient Escherichia coli strain encode mutated DHDPS enzymes impaired in lysine inhibition. The experiments outlined in this article emphasize that heterologous complementation can select for mutant clones when altered protein properties are requisite for functional rescue. In addition, the mutants rescued by heterologous complementation revealed a new critical amino acid substitution which renders lysine insensitivity to the plant DHDPS enzyme. An interpretation is given for the impaired inhibition mechanism of the mutant DHDPS enzyme by integrating the identified amino acid substitution in the DHDPS protein structure.  相似文献   

13.
The aspartate‐derived amino acid pathway in plants is an intensively studied metabolic pathway, because of the biosynthesis of the four essential amino acids lysine, threonine, isoleucine and methionine. The pathway is mainly controlled by the key regulatory enzymes aspartate kinase (AK; EC 2.7.2.4), homoserine dehydrogenase (HSDH; EC 1.1.1.3) and 4‐hydroxy‐tetrahydrodipicolinate synthase (EC 4.3.3.7), formerly referred to as dihydrodipicolinate synthase (DHDPS). They are encoded by isoenzyme families and it is not known why such families are evolutionarily maintained. To gain more insight into the specific roles and regulation of the isoenzymes, we inhibited DHDPS in Arabidopsis thaliana with the chemical compound (N,N‐dimethylglycinatoboranyloxycarbonylmethyl)‐dimethylamine‐borane (DDAB) and compared the short‐term effects on the biochemical and biomolecular level to the long‐term adaptations in dhdps knockout mutants. We found that DHDPS2 plays a crucial role in controlling lysine biosynthesis, thereby stabilizing flux through the whole aspartate pathway. Moreover, DHDPS2 was also shown to influence the threonine level to a large extent. In addition, the lysine‐sensitive AKs, AKLYS1 and AKLYS3 control the short‐ and long‐term responses to perturbed lysine biosynthesis in Arabidopsis thaliana.  相似文献   

14.
Camelina sativa (L.) Crantz was significantly more resistant to Rhizoctonia solani Kühn than [itBrassica napus L. cv Westar. Emergence of C. sativa seedlings was 22 to 33% greater than those of Westar in R. solani-infested soil. The greater resistance of C. sativa seedlings to R. solani appeared to be due to greater amounts of antimicrobial compounds present in C. sativa roots. These antimicrobial compounds inhibited the growth of both weakly virulent and virulent R. solani] isolates to the same extent. Four antimicrobial compounds were purified from C. sativa roots and their structures elucidated. Two were identified as the phytoalexins (camalexin and methoxycamalexin) previously described from C. sativa leaves. This appears to be the first report of elicitation of phytoalexins from roots of crucifers. Two preformed antimicrobial compounds were identified as methyl 1-methylindole-3-carboxylate and 10-methyl sulfinyldecylisothiocyanate.  相似文献   

15.
16.
Camelina sativa s. 1. stammt aus dem SO-europäisch—SW-asiatischen Steppengebiet (Camelina microcarpa) und ist mit der Ausbreitung des Ackerbaus schon früh zum Kulturbegleiter geworden. Sie hat besonders in Anpassung an den Anbau des Leins (Linum usitatissimum) die Arten Camelina pilosa (Übergangsart) und Camelina alyssum ausgebildet. Wegen der ölreichen Samen ist die Pflanze schon in prähistorischer Zeit in Reinkultur angebaut worden, und es entwickelte sich die großsamige Art Camelina sativa s. str. Nach spätneolithischen und bronzezeitlichen Funden breitete sich der Anbau dieser Kulturpflanze von Südosten kommend in Mitteleuropa aus. In der Eisenzeit war ihre Nutzung allgemein üblich. Besonders häufig sind Fundorte der meist verkohlten Samen- und Schotenreste aus den Gebieten an der Nordseeküste bekannt geworden. Im Rheinland stammen die ältesten Funde aus der Hallstattzeit (etwa 600 v. Chr.). Noch in römischer Zeit war in diesem Gebiet der Dotteranbau weit verbreitet. Im Mittelalter hingegen hatte die Pflanze an Bedeutung verloren, wurde aber vereinzelt noch bis in unsere Zeit genutzt. Der kleinsamige Leindotter (Camelina microcarpa) ist zweimal durch Funde aus kaiserzeitlichen Siedlungen bekannt geworden. Die großen Samen von Camelina alyssum wurden nur einmal in mittelalterlichen Sedimenten gefunden.  相似文献   

17.
Dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52), a validated antibiotic target, catalyses the first committed step in the lysine biosynthetic pathway: the condensation reaction between (S)-aspartate β-semialdehyde [(S)-ASA] and pyruvate via the formation of a Schiff base intermediate between pyruvate and the absolutely conserved active-site lysine. Escherichia coli DHDPS mutants K161A and K161R of the active-site lysine were characterised for the first time. Unexpectedly, the mutant enzymes were still catalytically active, albeit with a significant decrease in activity. The kcat values for DHDPS-K161A and DHDPS-K161R were 0.06 ± 0.02 s−1 and 0.16 ± 0.06 s−1 respectively, compared to 45 ± 3 s−1 for the wild-type enzyme. Remarkably, the KM values for pyruvate increased by only 3-fold for DHDPS-K161A and DHDPS-K161R (0.45 ± 0.04 mM and 0.57 ± 0.06 mM, compared to 0.15 ± 0.01 mM for the wild-type DHDPS), while the KM values for (S)-ASA remained the same for DHDPS-K161R (0.12 ± 0.01 mM) and increased by only 2-fold for DHDPS-K161A (0.23 ± 0.02 mM) and the Ki for lysine was unchanged. The X-ray crystal structures of DHDPS-K161A and DHDPS-K161R were solved at resolutions of 2.0 and 2.1 Å respectively and showed no changes in their secondary or tertiary structures when compared to the wild-type structure. The crystal structure of DHDPS-K161A with pyruvate bound at the active site was solved at a resolution of 2.3 Å and revealed a defined binding pocket for pyruvate that is thus not dependent upon lysine 161. Taken together with ITC and NMR data, it is concluded that although lysine 161 is important in the wild-type DHDPS-catalysed reaction, it is not absolutely essential for catalysis.  相似文献   

18.
Camelina neglecta is a diploid species from the genus Camelina, which includes the versatile oilseed Camelina sativa. These species are closely related to Arabidopsis thaliana and the economically important Brassica crop species, making this genus a useful platform to dissect traits of agronomic importance while providing a tool to study the evolution of polyploids. A highly contiguous chromosome-level genome sequence of C. neglecta with an N50 size of 29.1 Mb was generated utilizing Pacific Biosciences (PacBio, Menlo Park, CA) long-read sequencing followed by chromosome conformation phasing. Comparison of the genome with that of C. sativa shows remarkable coincidence with subgenome 1 of the hexaploid, with only one major chromosomal rearrangement separating the two. Synonymous substitution rate analysis of the predicted 34 061 genes suggested subgenome 1 of C. sativa directly descended from C. neglecta around 1.2 mya. Higher functional divergence of genes in the hexaploid as evidenced by the greater number of unique orthogroups, and differential composition of resistant gene analogs, might suggest an immediate adaptation strategy after genome merger. The absence of genome bias in gene fractionation among the subgenomes of C. sativa in comparison with C. neglecta, and the complete lack of fractionation of meiosis-specific genes attests to the neopolyploid status of C. sativa. The assembled genome will provide a tool to further study genome evolution processes in the Camelina genus and potentially allow for the identification and exploitation of novel variation for Camelina crop improvement.  相似文献   

19.
The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysine revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.  相似文献   

20.
Plant seed oil‐based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum‐derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co‐expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol‐3‐phosphate dehydrogenase (GPD1) genes under the control of seed‐specific promoters. Plants co‐expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild‐type plants. Further, DGAT1‐ and GDP1‐co‐expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild‐type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1‐ and GPD1‐co‐expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号