首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objectives of this study were to investigate the effects of rare earth elements (REEs) on in vitro rumen fermentation, gas production, microbial protein synthesis and nutrient digestion using in vitro batch culture and continuous culture technique. A mixture of REE containing (g/kg) 380 g of LaCI3·6H2O, 521 g of CeCI3·6H2O, 30 g of PrCI3·6H2O and 69 g chlorides of other light REEs. The experimental diet consisted of 885 g/kg barley grain, 84 g/kg barley silage and 31 g/kg supplement (dry matter (DM) basis). Diet supplemented with different dosages of REE (control, no additional REE; low, 400 mg/kg REE; and high, 800 mg/kg REE, DM basis) were incubated for 4, 8, 14 and 24 h in diluted rumen fluid. At the end of 24 h of incubation, gas production and concentration of volatile fatty acid (VFA) linearly increased with increasing REE supplementation; whereas, influence of REE supplementation on VFA profile was marginal. Dry matter disappearance was not affected (P>0.10). Six dual-flow continuous culture fermenters were used in a replicated 3 × 3 Latin square with same treatments and same diet used in the batch culture. Mean ruminal pH (5.71) and total VFA (93.6 mM) concentration were not affected by supplementation of REE. The molar proportion (mol/100 mol) of acetate (39.1) and propionate (50.5) was similar among the treatments. However, the proportion (mol/100 mol) of butyrate was higher with the high REE (6.6) than with low REE (5.3) or the control (5.8). Ruminal true digestibilities of organic matter (OM) (0.785, 0.811 and 0.828), acid detergent fibre (0.360, 0.431 and 0.432) and crude protein (0.496, 0.590 and 0.589) for control, low and high REE, respectively, linearly increased with increasing REE supplementation, whereas, the increase in ruminal digestibility from low to high dosage of REE was minimal. Microbial nitrogen (N) production (g/day) and microbial efficiency (g N/kg of truly fermented OM) were not affected by treatments. Improvement of ruminal digestibility of OM due to REE supplementation was attributed to the increase in digestibility of fibre and degradability of protein. The results suggest that REE supplementation improved ruminal fibrolytic and proteolytic activities.  相似文献   

2.
An experiment was conducted to study the rumen digestion characteristics of whole feeds (WF) and the neutral detergent fibre (aNDF) and neutral detergent soluble (NDS) fractions of a range of starch-rich feeds using an automated in vitro gas production (GP) technique. In addition, the ruminal digestibility values predicted from the GP data were compared to previously acquired in vivo data. Nine feeds with starch concentrations ranging from 389 to 712 g/kg dry matter and with known in vivo digestibilities were subjected to neutral detergent extraction. The GP for each WF and the corresponding aNDF fractions were measured in duplicate in buffered rumen fluid during 72 h on two occasions. The fermentation residues were collected and analyzed for aNDF concentration to estimate their true organic matter (OM) and NDF digestibility. The GP from the NDS fraction was calculated by subtracting the GP from the aNDF fraction from the GP of the WF. A three-pool Gompertz model was fitted to the GP profiles (R2 = 0.99) and a two compartment, mechanistic and dynamic rumen model was used to predict the digestibility of the potentially digestible feed fraction and the effective digestion rate (kd). The true OM and NDF digestibility determined for the WF ranged from 0.804 to 1.011 and from 0.362 to 1.107, respectively. The NDF digestibility determined for the aNDF fraction ranged from 0.410 to 0.985. The effective kd values estimated using GP data varied from 0.118 to 0.282/h for the WF and from 0.123 to 0.301/h for the NDS fraction, and were less (P<0.05) for maize compared to small grains (SG) but did not differ between barley and wheat (P>0.05). The effective kd values for the aNDF fraction ranged from 0.039 to 0.082/h and did not differ (P>0.05) either between maize and SG or between barley and wheat. The predicted ruminal NDS digestibility determined using GP data closely matched the in vivo data describing starch digestion (R2 = 0.81). The effective kd values for the WF were strongly related (R2 = 0.94) to those for the NDS fractions. The results indicate that when measured with the GP technique, the differences in the digestion characteristics of maize and small grains are less than those previously reported in studies using the in situ method. It is concluded that the predicted NDS digestibility determined using GP data corresponded well to the in vivo starch digestibility. Our results also suggest that the first order digestion rates of NDS (starch) in starch-rich feeds can be accurately determined by incubating WF samples in the GP system and using the GP kinetic data in a dynamic, mechanistic rumen model.  相似文献   

3.
This study was conducted to investigate effects of increasing doses: 0 (control), 6 (low), 12 (medium) and 24 (high) mg/g DM of ZADO® enzyme preparation mixture (ENZ) on in vitro gas production (GP) and some ruminal fermentation parameters of the fibrous feeds Saccharum officinarum (leaves), Andropogon gayanus (leaves), Pennisetum purpureum (leaves) and Sorghum vulgare (straw). Rumen liquor was obtained from two Brown Swiss cows fitted with permanent rumen cannulae fed a total mixed ration of a 500:500 commercial concentrate and alfalfa hay ad libitum. The GP was recorded at 2, 4, 6, 8, 10, 12, 24, 48, 72 and 96 h of incubation. After 96 h, the incubation was stopped and the pH of the mixture was determined and filtrate used to determine dry matter degradability (DMD), partitioning factor (PF96), gas yield (GY24), in vitro organic matter digestibility (OMD), metabolizable energy (ME), short chain fatty acids (SCFA), and microbial crude protien production (MCP). In general, the crude protein (CP) content of the fibrous feeds was low and ranged from 23 g/kg DM (S. officinarum) to 44 (A. gayanus). The fibre contents (i.e., NDFom and ADFom) were highest (P<0.05) in S. officinarum. Increasing ENZ dose linearly increased (P<0.05) GP of all fibrous feeds and had a quadratically increased (P<0.05) asymptotic gas production in P. purpureum and S. vulgare and rate of gas production in S. officinarum and S. vulgare. Addition of ENZ also quadratically increased (P<0.05) GP at all incubation times in S. officinarum and S. vulgare, and A. gayanus, but only at 72 h in A. gayanus. The parameters of ruminal fermentation of OMD, ME, GY24 and SCFA linearly increased (P<0.05) and MCP linearly decreased (P<0.05) with the ENZ addition. Addition of enzyme affected ruminal fermentation of our feeds differently, mainly dependent on their fibre content, although dosage of enzyme was also important as impacts generally increased at higher dosages of ENZ.  相似文献   

4.
Hungate's method is a well-accepted protocol for the isolation or incubation of anaerobes with a roll tube technique. The aim of this study was to stimulate fungal enzyme production by optimizing the components of Hungate's medium for the growth of a rumen fungus Anaeromyces sp. YQ3. The organism was grown on corn stalks and incubated for 10 days in defined media with two glucose levels (G+, glucose in the Hungate's medium as a glucose control; G?, glucose removed in a modified Hungate's medium) and four N sources (N1: yeast extract + tryptone + (NH4)2SO4 in Hungate's medium (control); N2: yeast extract + (NH4)2SO4; N3: tryptone + (NH4)2SO4; and N4: tryptone + yeast extract). In the G? media, the recovered activities of feruloyl esterase (FAE) (P<0.0001), acetyl esterase (AE) (P=0.0065) and xylanase (P<0.0001) were decreased, while the G+ media with N1 nitrogen stimulated the production of FAE and xylanase (P<0.0001). The G? medium with N2 nitrogen increased the recovered activities of carboxymethyl cellulase (P=0.0001) and avicelase (P<0.0001), while the N3 and N4 media increased the recovered activity of AE (P=0.0015). The N4 medium was comparable to the N1 medium in stimulating the amount of recovered xylanase activity. The activities of FAE (P<0.0001), AE (P<0.0001), and xylanase (P<0.0001) showed a time-dependent increase and reached their peaks at day 10, while the avicelase activity peaked at day 8 (P=0.0071). The esterase activities (FAE and AE) were positively correlated with the enzyme activities of xylanase and carboxymethyl cellulase (r > 0.48, P<0.05). After a 10-day incubation, the glucose in the Hungate's media contributed to an increase in organic matter disappearance (P<0.0001) and volatile fatty acid (VFA) concentration (P<0.0001), except for molar acetate proportions. The N4 treatment increased organic matter disappearance and total VFA concentration (P=0.0002). The change in N source did not alter molar proportions of acetate, propionate and valerate, while the N2 treatment increased molar butyrate proportion (P<0.0035), and both N2 and N3 increased the molar proportion of branched chain VFAs (P<0.0041). In summary, the glucose in the Hungate's medium is beneficial for stimulating the production of esterases and xylanase, thereby promoting fungal growth. Amending the N source in Hungate's medium brings about different yields of rumen fungal esterases and polysaccharide hydrolases that have important nutritional impacts on fibre degradation in ruminant animals.  相似文献   

5.
The effects of non-enzymatic browning reactions on in vitro ruminal gas production and in vitro ruminal and intestinal crude protein (CP) digestibilities of soybean (SBM) and cottonseed (CSM) meals were investigated. Non-enzymatically browned SBM and CSM samples were prepared using two xylose levels (10 or 30 g/kg dry matter), two heating lengths (30 or 60 min) and two heating temperatures (120 or 150 °C) for a total of one untreated (commercially solvent-extracted, Control) and eight treated samples for each protein source. The control SBM had higher (P<0.001) in vitro ruminal CP degradability values than the treated samples. Intestinal protein digestibility and total-tract CP digestibility of CSM and SBM were affected by the treatment (P<0.01). The results of the study indicate that not only ruminal CP degradability is reduced but also intestinal and total-tract CP digestibilities may be lowered depending on protein source and intensity of the non-enzymatic browning reaction.  相似文献   

6.
The objective was to identify legume shrub species for development of agroforestry technologies based on seed and forage (leaves and twigs < 10 mm diameter) yield, and determinants of forage quality. Ten individual plants of Bituminaria bituminosa ‘Ecotypes 1’, B. bituminosa ‘Ecotypes 2’, Medicago citrina, and M. arborea from Spain; Colutea istria and Onobrychis aurantiaca from Syria; C. istria from Jordan; Chamaecytisus mollis from Morocco; and Coronilla glauca from France were randomly selected from plots established in a non-tropical dryland environment in northwest Syria in 2000. Five individual plants of each species were cut back to 0.5 m above ground in March 2004. Coppice regrowths were pruned in December 2004 and April 2005 to determine forage yield and proportion of forage in the total above ground biomass (PEFB). Forage samples were analyzed for concentrations of crude protein (CP), lignin(sa), acid detergent fibre (ADFom), neutral detergent fibre (aNDFom), in vitro organic matter (OM) digestibility (IVOMD), and in vitro 24 h gas production (IVGP24h). Matured seeds were hand harvested from the remaining five plants of each species to estimate seed yield. Forage (21–250 kg DM/ha) and seed (0–200 kg DM/ha) yields; PEFB (0.22–0.96); and concentrations of CP (85–115 g/kg DM), lignin(sa) (14–42 g/kg DM), ADFom (94–170 g/kg DM), aNDFom (122–217 g/kg DM), IVOMD (456–617 g/kg OM), and IVGP24h (27–42 ml 200 mg/DM) varied (P<0.05) among shrub species. The IVOMD and IVGP24h were positively correlated (r = 0.75, P<0.032), whereas IVOMD and IVGP24h were negatively correlated with ADFom, lignin(sa) and aNDFom. In terms of forage and seed yields and determinants of forage quality, C. istria from Jordan, M. arborea, B. bituminosa ‘Ecotype-2’, C. istria and O. aurantiaca have higher potential than C. mollis, C. glauca and B. Bituminosa ‘Ecotype-1’ for the development of agroforestry technologies in non-tropical dry areas.  相似文献   

7.
An in vitro incubation in batch was conducted to investigate the effect of propionate precursor (malate or fumarate) on fermentation characteristics, and production of CLA and methane by rumen microbes when incubated with linoleic acid (C18:2). Sixty milligrams of C18:2 alone (LA), 60 mg C18:2 with 24 mM malic acid (M-LA), or 60 mg C18:2 with 24 mM fumaric acid (F-LA) was added to 150 ml culture solution consisting of 75 ml strained rumen fluid and 75 ml McDougall's artificial saliva. Culture solution for incubation was also made without malate, fumarate, and C18:2 (control). Two grams of feed consisting of 1.4 g concentrate and 0.6 g ground alfalfa (DM basis) was also added to the culture solution of each treatment. An in vitro incubation in batch was made anaerobically in a shaking incubator for up to 12 h at 39 °C.The pH of the culture solution was increased (P<0.0001) in M-LA or F-LA treatments from 3 h to 12 h compared with the control and LA treatments. At 12 h incubation, the concentration of total VFA in the culture solution was higher (P<0.01) in M-LA and F-LA than in control and LA treatments. Concentration of C3 by M-LA and F-LA was increased at 3 h (P<0.01), 6 h (P<0.01) and 12 h (P<0.01) compared with control and LA. However, no difference in C3 concentration was observed between control and LA, or between M-LA and F-LA. Accumulated total gas produced for up to 12 h incubation was increased (P<0.01) by M-LA or F-LA compared with the control. Accumulated total methane produced for up to 12 h incubation, however, was greatly reduced (P<0.01) by all the supplements compared with control, and its production from M-LA or F-LA was smaller than the LA. The M-LA or F-LA also increased (P<0.05–<0.001) the concentrations of cis9, trans11-CLA for all incubation times and trans10, cis12-CLA at 1 h (P<0.01), 3 h (P<0.05), and 12 h (P<0.05) incubation times compared with LA.It can be concluded that malate and fumarate, as propionate precursors, act as alternative electron sinks and may compete with CH4 generation and bio-hydrogenation of C18:2 in the utilization of metabolic H2. The highest CLA concentration at the early incubation stage (1 h) was accompanied by reduced propionate proportion. Linoleic acid is also considered one of the potential alternatives to suppress CH4 generation.  相似文献   

8.
Published analyses of enteric methane (CH4) emissions from sheep and cattle show an inverse relationship between feed intake and CH4 yield (g CH4/kg dry matter (DM) intake), which suggests opportunities for reducing CH4 emissions from feed eaten and per unit of animal production. Most relationships between feed intake and CH4 yield have been based on animals fed conserved feeds, especially silages and grains. Our research is a series of experiments with fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne; ryegrass) forages fed to sheep at a range of feed intake levels. This study was comprised of four experiments where good quality freshly harvested white clover or ryegrass were fed to sheep over a three-fold range in DM intake, and CH4 emissions were measured in respiration chambers for two consecutive days in each experiment. Measurements were made from 16 sheep in Experiment 1 (fed at 1.6 × metabolizable energy requirements for maintenance; MEm), 28 sheep in Experiment 2 (at 0.8 and 2.0 × MEm), eight sheep and two measurement periods in Experiment 3 (at 1.6 × MEm), and 30 sheep in Experiment 4 (fed at 0.8, 1.2, 1.6, 2.0 and 2.5 × MEm). Prior to each experiment, sheep had a 10 d acclimatization period to diets. Apparent digestibility was measured over 7 d from sheep in Experiments 1, 3 and 4, along with collection of rumen digesta for volatile fatty acid (VFA) determination. Although CH4 yields differed when sheep were fed white clover or ryegrass at similar intakes, the differences were inconsistent and mean values similar across all experiments. This, and a similar structure of all experiments, enabled combined analysis of data from all four experiments using the restricted maximum likelihood (REML) procedure to estimate effects of feed intake level on digestibility, digestible nutrient intake, gas emissions, and VFA concentrations in the rumen. The REML analysis showed that when DM intake increased from 0.40 to 1.60 kg/d, the predicted responses were an increase in CH4 production (g/d) of 187% (12.4–35.6 g/d; P<0.001), and a decline in CH4 yield of 21% (25.6–20.2 g/kg DM intake; P<0.001). High feed intake levels were associated with increased molar proportions (mM of total VFA) of propionate from 0.17 to 0.21 (P=0.038). Single and multiple regressions were completed on the data from all experiments, with organic matter (OM) intake predicting 0.87 of the variation in CH4 production, and molar proportion of propionate predicting 0.60 of the variation in CH4 yield. Increasing feed intakes by 1 kg/d of DM reduced CH4 yield by 4.5 g/kg DM intake. Plant chemical composition was weakly related to CH4 yield. High intakes of fresh forages will lower CH4 yield from fermentation, but effects of feed composition on CH4 emissions were minor. The interaction between effects of feed intake and rumen function requires further investigation to understand relationships with CH4 emissions.  相似文献   

9.
In four parallel experiments, herbage [three harvests of alfalfa (308 to 379 g dry matter (DM)/kg), one of whole-plant corn (331 g DM/kg)] was ensiled with three different treatments: no inoculant (control), Lactobacillus plantarum (LP) or formic acid (FA), in 1-L mini-silos and fermented for 60 d at room temperature (22 °C). Mini-silos were opened and analyzed for fermentation characteristics and soluble N fractions. A subsample of wet silage from each mini-silo was ground to 4 mm and stored at ?20 °C. Silages were thawed and subjected to 9 h ruminal in vitro incubations to measure gas production and volatile fatty acid (VFA) production as well as microbial biomass yield (MBY) and microbial non-ammonia N (MNAN) formation using 15N as a marker. In all four experiments, silage fermentation products and pH indicated good preservation across all treatments. Analysis of data showed that FA- and LP-treated silages had lower concentrations of ammonia-N and free amino acids N than control. The FA treatment was lower in soluble N, but higher in peptide-N, than control. Silage pH was lowest in FA (4.25), followed by LP (4.28), and control (4.38). Ruminal in vitro gas production and VFA concentrations were not different among treatments (P>0.05). Compared to control, FA- and LP-treated silage yielded greater MNAN and MBY. These findings suggested that L. plantarum preserved more true protein during silage fermentation than control, which in turn increased in vitro ruminal microbial growth.  相似文献   

10.
The precursors bis[N-(alkyl)benzimidazoliumylmethyl]durene halide (1a: alkyl = C2H5, halide = Br?; 1b: alkyl = n-C4H9, halide = Cl?; durene = 1,2,4,5-tetramethylbenzene) and their two new NHC silver(I) complexes [Durene(CH2BimyEtAgBr)2] (2a) and [Durene(CH2BimynBuAgCl)2] (2b) (Bimy = benzimidazol-2-ylidene) have been prepared and characterized. In the crystal structures of 2a and 2b the aromatic π–π stacking interactions are observed.  相似文献   

11.
Use of suitable plants that can extract and concentrate excess P from contaminated soil serves as an attractive method of phytoremediation. Plants vary in their potential to assimilate different organic and inorganic P-substrates. In this study, the response of Duo grass (Duo festulolium) to variable rates of soil-applied potassium dihydrogen phosphate (KH2PO4) on biomass yield and P uptake were studied. Duo grown for 5 weeks in soil with 2.5, 5 and 7.5 g KH2PO4 kg?1 soil showed a significantly higher biomass and shoot P content of 8.3, 11.4 and 12.3 g P kg?1 dry weight respectively compared to plants that received no soil added P. Also, the ability of Duo to metabolize different forms of P-substrates was determined by growing them in sterile Hoagland's agar media with different organic and inorganic P-substrates, viz. KH2PO4, glucose-1-phosphate (G1P), inositiol hexaphosphate (IHP), adenosine triphosphate (ATP) and adenosine monophosphate (AMP) for 2 weeks. Plants on agar media with different P-substrates also showed enhanced biomass yield and shoot P relative to no P control and the P uptake was in the order of ATP > KH2PO4 > G1P > IHP = AMP > no P control. The activities of both phytase (E.C.3.1.3.26) and acid phosphatases (E.C.3.1.3.2) were higher in all the P received plants than the control. Duo grass is capable of extracting P from the soil and also from the agar media and thus it can serve as possible candidate for phytoextraction of high P-soil.  相似文献   

12.
Denitrifying bioreactors are currently being tested as an option for treating nitrate (NO3?) contamination in groundwater and surface waters. However, a possible side effect of this technology is the production of greenhouse gases (GHG) including nitrous oxide (N2O) and methane (CH4). This study examines NO3? removal and GHG production in a stream-bed denitrifying bioreactor currently operating in Southern Ontario, Canada. The reactor contains organic carbon material (pine woodchips) intended to promote denitrification. Over a 1 year period, monthly averaged removal of influent (stream water) NO3? ranged from 18 to 100% (0.3–2.5 mg N L?1). Concomitantly, reactor dissolved N2O and CH4 production, averaged 6.4 μg N L?1 (2.4 mg N m?2 d?1), and 974 μg C L?1 (297 mg C m?2 d?1) respectively, where production is calculated as the difference between inflow and effluent concentrations. Gas bubbles entrapped in sediments overlying the reactor had a composition ranging from 19 to 64% CH4, 1 to 6% CO2, and 0.5 to 2 ppmv N2O; however, gas bubble emission rates were not quantified in this study. Dissolved N2O production rates from the bioreactor were similar to emission rates reported for some agricultural croplands (e.g. 0.1–15 mg N m?2 d?1) and remained less than the highest rates observed in some N-polluted streams and rivers (e.g. 110 mg N m?2 d?1, Grand R., ON). Dissolved N2O production represented only a small fraction (0.6%) of the observed NO3? removal over the monitoring period. Dissolved CH4 production during summer months (up to 1236 mg C m?2 d?1), was higher than reported for some rivers and reservoirs (e.g. 6–66 mg C m?2 d?1) but remained lower than rates reported for some wastewater treatment facilities (e.g. sewage treatment plants and constructed wetlands, 19,500–38,000 mg C m?2 d?1).  相似文献   

13.
The effects of elevated atmospheric CO2 (eCO2) and water table draw-down on soil carbon sequestration in an ombrotrophic bog ecosystem were examined. Peat monoliths (11 cm diameter, 25 cm deep) with intact bog vegetation were exposed to ambient or elevated (ambient + 200 mg l?1) atmospheric CO2, combined with a natural water table (level with the peat surface) or a water table draw-down (?5 cm). Eight observations per treatment were included in the study, which was conducted over a 12 week period. Concentration of dissolved organic carbon (DOC), phenolic compounds and the fluxes of CO2 and CH4 were measured. The eCO2 treatment caused an increase in the CH4 and CO2 fluxes and a small decrease in both the DOC and phenolic concentrations. The water table draw-down invoked decreases in phenolic and DOC concentrations, a decrease in CH4 flux and a small increase in CO2 flux. The combined (eCO2 + water table draw-down) treatment caused a larger than expected CH4 flux decrease and CO2 flux increase and an increase in DOC concentration. Our results suggest very different effects on the system dependent on the treatment applied. The draw-down treatment principally increased oxidation of the rhizosphere resulting in increased decomposition and as such a removal of material from the dissolved carbon pool. The data also suggest labile carbon availability may be limiting the rate of decomposition and so slowing inorganic nutrient and carbon pool turn-over. The elevated CO2 addressed the labile-carbon limitation. Under the environment of the combined treatment, these limitations were effectively removed, culminating in a destabilisation of the carbon-sequestering environment to a weaker sink (or even a source) of atmospheric carbon.  相似文献   

14.
This research investigated the effects of various nutrients on arsenic (As) removal by arsenic hyperaccumulator Pteris vittata L. in a Hoagland nutrient solution (HNS). The treatments included different concentrations of Ca and K in 20% strength of HNS, different strengths of HNS (10, 20 and 30%), different strengths of HNS (10 and 20%) with and without CaCO3, and different concentrations of Ca, K, NO3, NH4, and P in 20% strength of HNS. The plants were grown in nutrient solution containing 1 mg As L?1 for 4 weeks except the Ca/K experiment where the plants were grown in nutrient solution containing 10 or 50 mg As L?1 for 1 week. Adding up to 4 mM Ca or 3 mM K to 20% strength HNS significantly (P < 0.05) increased plant arsenic accumulation when the solution contained 10 mg As L?1. Plant arsenic removal was reduced with increasing Ca and K concentrations at 50 mg As L?1. Lower strength of HNS (10%) resulted in the greatest plant arsenic removal (79%) due to lower competition of P with As for plant uptake. Addition of CaCO3 to 20% strength of HNS significantly increased arsenic removal by P. vittata. Among the nutrients tested, NO3 and CaCO3 were beneficial to plant arsenic removal while NH4, P and Cl had adverse effects. This experiment demonstrated that it is possible to optimize plant arsenic removal by adjusting nutrients in the growth medium.  相似文献   

15.
A study was undertaken to evaluate the effect of various ingredients on the physical quality of fish feeds. Eleven fish meal-based diets, formulated to have the same levels of macronutrients, differing in either starch or protein source, were processed in a five section twin-screw extruder. The purified starch, added to reach the nutritional specifications of the diets, was significantly correlated to expansion (r = 0.405, P<0.001), durability (r = 0.276, P=0.012), and hardness (r = 0.494, P<0.001), while such correlations were not seen for the total starch level in the diets. Cellulose, added as filler to reach the same level of NSP in the diets, was negatively correlated to the expansion (r = ?0.603, P<0.001). The specific mechanical energy of the extrusion process was weakly correlated to starch gelatinisation (r = 0.220, P<0.019). The present study showed that traditional parameters and classifications such as chemical composition of plant ingredients are inadequate indicators of processing effects when used in fish diets. The overall conclusion is that processing parameters needed to achieve the desired physical properties of diets, should be based on specific knowledge of each ingredient in the feed.  相似文献   

16.
The potential of four essential cations (K+, Ca2+, Mg2+ and Fe2+) to alleviate salt toxicity was studied in sage (Salvia officinalis L.) plants grown in pots. Two concentrations of the following chloride salts: KCl, CaCl2, MgCl2 and FeCl3, were used together with 100 mM NaCl to study the effects of these nutrients on plant growth, leaf essential oils (EOs) and phenolic diterpenes composition. The sage plants accumulated Na+ in their leaves (includers); this has affected secondary metabolites’ biosynthesis. Treatment with 100 mM NaCl slightly decreased borneol and viridiflorol, while increased manool concentrations. Addition of KCl, CaCl2 and MgCl2 increased considerably in a dose-dependent manner the oxygen-containing monoterpenes (1.8-cineole, camphor, β-thujone and borneol) in 100 mM NaCl-treated sage. Whereas, the contents of viridiflorol decreased further with the addition of KCl in 100 mM NaCl-treated sage. Our results suggest that the changes in EOs composition were more related to K+ and Ca2+ availability than to Na+ toxicity. Furthermore, treatment with NaCl decreased by 50% carnosic acid (CA), a potent antioxidant, content in the leaves. K+ and Ca2+ promoted the accumulation of CA and its methoxylated form (MCA) in the leaves. The concentration of CA was positively correlated with leaf K+ (r = 0.56, P = 0.01) and Ca2+ (r = 0.44, P = 0.05) contents. It appears that different salt applications in combination with NaCl treatments had a profound effect on EOs and phenolic diterpene composition in sage. Therefore, ionic interactions may be carefully considered in the cultivation of this species to get the desired concentrations of these secondary metabolites in leaf extracts.  相似文献   

17.
Effects of plant growth regulators (PGRs) and organic elicitors (OEs) on Coleonema pulchellum in vitro micropropagation, secondary product production and pharmacological activities were evaluated. In vitro, ex vitro and parental plants of C. pulchellum were investigated for their potential to produce phenolic and pharmacological compounds. Different morphogenic characteristics of shoots were obtained with PGRs- and OEs-containing media. A higher number of normal shoots were achieved with a low concentration of thidiazuron (TDZ: 4.5 μM). Lesser numbers were found with combinations of TDZ (13.6 μM) + indole-3-acetic acid (IAA: 2.9 μM); haemoglobin (HB: 300 mg l 1) or glutamine (GM: 40 μM) + benzyladenine (BA: 8.8 μM). Shoots were rooted in vitro and successfully acclimatized. Plant growth regulators and OEs had a significant effect on the synthesis and accumulation of phenolic compounds and flavonoids. In particular, casein hydrolysate (CH) as well as a combination of GM and BA induced high levels of total phenolics and flavonoids during in vitro culture. Cytokinins and OEs had a significant effect on DPPH radical scavenging and antibacterial activities of C. pulchellum extracts. Acclimatized C. pulchellum plants can be used as substitute alternative to natural populations.  相似文献   

18.
This study was carried out to evaluate intake, digestibility, ruminal fermentation, nitrogen (N) retention and ruminal microbial protein synthesis in lambs fed dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) hay or hay supplemented with urea and 0, 5, 10 or 15 g/kg of live weight (LW) of cracked corn grain. Ten lambs (mean LW of 28 ± 0.9 kg), housed in metabolic cages, were used in a double 5 × 5 Latin Square experiment. Except fibre intake and digestibility, which was higher, the intake and digestibility of the others feed components, as well as ruminal microbial protein synthesis and N retention were lower in non-supplemented lambs. Corn supplementation increased total dry matter (DM) (P<0.05), organic matter (OM), non-structural carbohydrate (NSC) and energy intake (P<0.01) but decreased total neutral detergent fibre (aNDFom) (P<0.01) intake, as well as OM and aNDFom intake from the hay (P<0.01). Apparent DM, OM and energy digestibility, as well as OM true digestibility (OMTD) increased (P<0.01), and aNDFom digestibility decreased linearly (P<0.01) as corn supplementation increased. Total N intake was not influenced but, apparent and true N digestibility, as well as urinary N excretion decreased (P<0.01), and ruminal microbial N entering the small intestine increased linearly (P<0.01) as corn supplementation increased. However, the efficiency of ruminal microbial protein synthesis was similar for all treatments. Mean ruminal pH values and ammonia N concentrations decreased linearly (P<0.01) with level of corn supplementation. Ammonia N and amino acid, as well as peptide concentrations in ruminal fluid were quadratically related (P<0.01) with the time after feeding. Corn supplementation had a linear additive effect on total dry matter and digestible energy intake, as well as on N retention, but a linear negative effect on hay intake and on fibre digestibility. However, decreased forage digestibility by animals was probably neither related to lower ruminal pH, which values were always higher than 7.0, nor related to ruminal sugar concentrations, which were similar for all treatments.  相似文献   

19.
20.
Novel trinuclear Ni(II) complex [Ni3(pmdien)3(btc)(H2O)3](ClO4)3 · 4H2O, 1 where pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine, H3btc = 1,3,5-benzenetricarboxylic (trimesic) acid, has been prepared and structurally characterized. Three nickel atoms are bridged by btc trianion and their coordination sphere is completed by three N atoms of pmdien and O atom of the water molecule. The three nickel(II) magnetic centers are equivalent and their coordination spheres are completed to deformed octahedrons. Magnetic susceptibility was measured over the temperature range 1.8–300 K and zJ = ?0.19 cm?1, D = 3.79 cm?1, g = 2.18 parameters were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号