首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of many RNAs depends crucially on their structure. Therefore, the design of RNA molecules with specific structural properties has many potential applications, e.g. in the context of investigating the function of biological RNAs, of creating new ribozymes, or of designing artificial RNA nanostructures. Here, we present a new algorithm for solving the following RNA secondary structure design problem: given a secondary structure, find an RNA sequence (if any) that is predicted to fold to that structure. Unlike the (pseudoknot-free) secondary structure prediction problem, this problem appears to be hard computationally. Our new algorithm, "RNA Secondary Structure Designer (RNA-SSD)", is based on stochastic local search, a prominent general approach for solving hard combinatorial problems. A thorough empirical evaluation on computationally predicted structures of biological sequences and artificially generated RNA structures as well as on empirically modelled structures from the biological literature shows that RNA-SSD substantially out-performs the best known algorithm for this problem, RNAinverse from the Vienna RNA Package. In particular, the new algorithm is able to solve structures, consistently, for which RNAinverse is unable to find solutions. The RNA-SSD software is publically available under the name of RNA Designer at the RNASoft website (www.rnasoft.ca).  相似文献   

2.
3.

Background  

The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework.  相似文献   

4.
A detailed knowledge of the mapping between sequence and structure spaces in populations of RNA molecules is essential to better understand their present-day functional properties, to envisage a plausible early evolution of RNA in a prebiotic chemical environment and to improve the design of in vitro evolution experiments, among others. Analysis of natural RNAs, as well as in vitro and computational studies, show that certain RNA structural motifs are much more abundant than others, pointing out a complex relation between sequence and structure. Within this framework, we have investigated computationally the structural properties of a large pool (108 molecules) of single-stranded, 35 nt-long, random RNA sequences. The secondary structures obtained are ranked and classified into structure families. The number of structures in main families is analytically calculated and compared with the numerical results. This permits a quantification of the fraction of structure space covered by a large pool of sequences. We further show that the number of structural motifs and their frequency is highly unbalanced with respect to the nucleotide composition: simple structures such as stem-loops and hairpins arise from sequences depleted in G, while more complex structures require an enrichment of G. In general, we observe a strong correlation between subfamilies—characterized by a fixed number of paired nucleotides—and nucleotide composition. Our results are compared to the structural repertoire obtained in a second pool where isolated base pairs are prohibited.  相似文献   

5.
The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 4(12) sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described.  相似文献   

6.
K Han  H J Kim 《Nucleic acids research》1993,21(5):1251-1257
We have developed an algorithm and a computer program for simultaneously folding homologous RNA sequences. Given an alignment of M homologous sequences of length N, the program performs phylogenetic comparative analysis and predicts a common secondary structure conserved in the sequences. When the structure is not uniquely determined, it infers multiple structures which appear most plausible. This method is superior to energy minimization methods in the sense that it is not sensitive to point mutation of a sequence. It is also superior to usual phylogenetic comparative methods in that it does not require manual scrutiny for covariation or secondary structures. The most plausible 1-5 structures are produced in O(MN2 + N3) time and O(N2) space, which are the same requirements as those of widely used dynamic programs based on energy minimization for folding a single sequence. This is the first algorithm probably practical both in terms of time and space for finding secondary structures of homologous RNA sequences. The algorithm has been implemented in C on a Sun SparcStation, and has been verified by testing on tRNAs, 5S rRNAs, 16S rRNAs, TAR RNAs of human immunodeficiency virus type 1 (HIV-1), and RRE RNAs of HIV-1. We have also applied the program to cis-acting packaging sequences of HIV-1, for which no generally accepted structures yet exist, and propose potentially stable structures. Simulation of the program with random sequences with the same base composition and the same degree of similarity as the above sequences shows that structures common to homologous sequences are very unlikely to occur by chance in random sequences.  相似文献   

7.
8.
We present and study the behavior of a simple kinetic model for the melting of RNA secondary structures, given that those structures are known. The model is then used as a map that. assigns structure dependent overall rate constants of melting (or refolding) to a sequence. This induces a landscape of reaction rates, or activation energies, over the space of sequences with fixed length. We study the distribution and the correlation structure of these activation energies. Correspondence to: P. Schuster  相似文献   

9.

Background

Structured RNAs have many biological functions ranging from catalysis of chemical reactions to gene regulation. Yet, many homologous structured RNAs display most of their conservation at the secondary or tertiary structure level. As a result, strategies for structured RNA discovery rely heavily on identification of sequences sharing a common stable secondary structure. However, correctly distinguishing structured RNAs from surrounding genomic sequence remains challenging, especially during de novo discovery. RNA also has a long history as a computational model for evolution due to the direct link between genotype (sequence) and phenotype (structure). From these studies it is clear that evolved RNA structures, like protein structures, can be considered robust to point mutations. In this context, an RNA sequence is considered robust if its neutrality (extent to which single mutant neighbors maintain the same secondary structure) is greater than that expected for an artificial sequence with the same minimum free energy structure.

Results

In this work, we bring concepts from evolutionary biology to bear on the structured RNA de novo discovery process. We hypothesize that alignments corresponding to structured RNAs should consist of neutral sequences. We evaluate several measures of neutrality for their ability to distinguish between alignments of structured RNA sequences drawn from Rfam and various decoy alignments. We also introduce a new measure of RNA structural neutrality, the structure ensemble neutrality (SEN). SEN seeks to increase the biological relevance of existing neutrality measures in two ways. First, it uses information from an alignment of homologous sequences to identify a conserved biologically relevant structure for comparison. Second, it only counts base-pairs of the original structure that are absent in the comparison structure and does not penalize the formation of additional base-pairs.

Conclusion

We find that several measures of neutrality are effective at separating structured RNAs from decoy sequences, including both shuffled alignments and flanking genomic sequence. Furthermore, as an independent feature classifier to identify structured RNAs, SEN yields comparable performance to current approaches that consider a variety of features including stability and sequence identity. Finally, SEN outperforms other measures of neutrality at detecting mutational robustness in bacterial regulatory RNA structures.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-014-1203-8) contains supplementary material, which is available to authorized users.  相似文献   

10.
RNA molecules, which are found in all living cells, fold into characteristic structures that account for their diverse functional activities. Many of these RNA structures consist of a collection of fundamental RNA motifs. The various combinations of RNA basic components form different RNA classes and define their unique structural and functional properties. The availability of many genome sequences makes it possible to search computationally for functional RNAs. Biological experiments indicate that functional RNAs have characteristic RNA structural motifs represented by specific combinations of base pairings and conserved nucleotides in the loop regions. The searching for those well-ordered RNA structures and their homologues in genomic sequences is very helpful for the understanding of RNA-based gene regulation. In this paper, we consider the following problem: given an RNA sequence with a known secondary structure, efficiently determine candidate segments in genomic sequences that can potentially form RNA secondary structures similar to the given RNA secondary structure. Our new bottom-up approach searches all potential stem-loops similar to ones of the given RNA secondary structure first, and then based on located stem-loops, detects potential homologous structural RNAs in genomic sequences.  相似文献   

11.
Morphospaces—representations of phenotypic characteristics—are often populated unevenly, leaving large parts unoccupied. Such patterns are typically ascribed to contingency, or else to natural selection disfavoring certain parts of the morphospace. The extent to which developmental bias, the tendency of certain phenotypes to preferentially appear as potential variation, also explains these patterns is hotly debated. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. Upon random mutations, some RNA SS shapes (the frequent ones) are much more likely to appear than others. By using the RNAshapes method to define coarse-grained SS classes, we can directly compare the frequencies that noncoding RNA SS shapes appear in the RNAcentral database to frequencies obtained upon a random sampling of sequences. We show that: 1) only the most frequent structures appear in nature; the vast majority of possible structures in the morphospace have not yet been explored; 2) remarkably small numbers of random sequences are needed to produce all the RNA SS shapes found in nature so far; and 3) perhaps most surprisingly, the natural frequencies are accurately predicted, over several orders of magnitude in variation, by the likelihood that structures appear upon a uniform random sampling of sequences. The ultimate cause of these patterns is not natural selection, but rather a strong phenotype bias in the RNA genotype–phenotype map, a type of developmental bias or “findability constraint,” which limits evolutionary dynamics to a hugely reduced subset of structures that are easy to “find.”  相似文献   

12.
Prediction of RNA secondary structure based on helical regions distribution   总被引:5,自引:0,他引:5  
MOTIVATION: RNAs play an important role in many biological processes and knowing their structure is important in understanding their function. Due to difficulties in the experimental determination of RNA secondary structure, the methods of theoretical prediction for known sequences are often used. Although many different algorithms for such predictions have been developed, this problem has not yet been solved. It is thus necessary to develop new methods for predicting RNA secondary structure. The most-used at present is Zuker's algorithm which can be used to determine the minimum free energy secondary structure. However many RNA secondary structures verified by experiments are not consistent with the minimum free energy secondary structures. In order to solve this problem, a method used to search a group of secondary structures whose free energy is close to the global minimum free energy was developed by Zuker in 1989. When considering a group of secondary structures, if there is no experimental data, we cannot tell which one is better than the others. This case also occurs in combinatorial and heuristic methods. These two kinds of methods have several weaknesses. Here we show how the central limit theorem can be used to solve these problems. RESULTS: An algorithm for predicting RNA secondary structure based on helical regions distribution is presented, which can be used to find the most probable secondary structure for a given RNA sequence. It consists of three steps. First, list all possible helical regions. Second, according to central limit theorem, estimate the occurrence probability of every helical region based on the Monte Carlo simulation. Third, add the helical region with the biggest probability to the current structure and eliminate the helical regions incompatible with the current structure. The above processes can be repeated until no more helical regions can be added. Take the current structure as the final RNA secondary structure. In order to demonstrate the confidence of the program, a test on three RNA sequences: tRNAPhe, Pre-tRNATyr, and Tetrahymena ribosomal RNA intervening sequence, is performed. AVAILABILITY: The program is written in Turbo Pascal 7.0. The source code is available upon request. CONTACT: Wujj@nic.bmi.ac.cn or Liwj@mail.bmi.ac.cn   相似文献   

13.
RNA secondary structure prediction is one of the classic problems of bioinformatics. The most efficient approaches to solving this problem are based on comparative analysis. As a rule, multiple RNA sequence alignment and subsequent determination of a common secondary structure are used. A new algorithm was developed to obviate the need for preliminary multiple sequence alignment. The algorithm is based on a multilevel MEME-like iterative search for a generalized profile. The search for common blocks in RNA sequences is carried out at the first level. Then the algorithm refines the chains consisting of these blocks. Finally, the search for sets of common helices, matched with alignment blocks, is carried out. The algorithm was tested with a tRNA set containing additional junk sequences and with RFN riboswitches. The algorithm is available at http://bioinf.fbb.msu.ru/RNAAlign.  相似文献   

14.
MOTIVATION: The functions of non-coding RNAs are strongly related to their secondary structures, but it is known that a secondary structure prediction of a single sequence is not reliable. Therefore, we have to collect similar RNA sequences with a common secondary structure for the analyses of a new non-coding RNA without knowing the exact secondary structure itself. Therefore, the sequence comparison in searching similar RNAs should consider not only their sequence similarities but also their potential secondary structures. Sankoff's algorithm predicts the common secondary structures of the sequences, but it is computationally too expensive to apply to large-scale analyses. Because we often want to compare a large number of cDNA sequences or to search similar RNAs in the whole genome sequences, much faster algorithms are required. RESULTS: We propose a new method of comparing RNA sequences based on the structural alignments of the fixed-length fragments of the stem candidates. The implemented software, SCARNA (Stem Candidate Aligner for RNAs), is fast enough to apply to the long sequences in the large-scale analyses. The accuracy of the alignments is better or comparable with the much slower existing algorithms. AVAILABILITY: The web server of SCARNA with graphical structural alignment viewer is available at http://www.scarna.org/.  相似文献   

15.
With the rapid increase in the size of the genome sequence database, computational analysis of RNA will become increasingly important in revealing structure-function relationships and potential drug targets. RNA secondary structure prediction for a single sequence is 73 % accurate on average for a large database of known secondary structures. This level of accuracy provides a good starting point for determining a secondary structure either by comparative sequence analysis or by the interpretation of experimental studies. Dynalign is a new computer algorithm that improves the accuracy of structure prediction by combining free energy minimization and comparative sequence analysis to find a low free energy structure common to two sequences without requiring any sequence identity. It uses a dynamic programming construct suggested by Sankoff. Dynalign, however, restricts the maximum distance, M, allowed between aligned nucleotides in the two sequences. This makes the calculation tractable because the complexity is simplified to O(M(3)N(3)), where N is the length of the shorter sequence.The accuracy of Dynalign was tested with sets of 13 tRNAs, seven 5 S rRNAs, and two R2 3' UTR sequences. On average, Dynalign predicted 86.1 % of known base-pairs in the tRNAs, as compared to 59.7 % for free energy minimization alone. For the 5 S rRNAs, the average accuracy improves from 47.8 % to 86.4 %. The secondary structure of the R2 3' UTR from Drosophila takahashii is poorly predicted by standard free energy minimization. With Dynalign, however, the structure predicted in tandem with the sequence from Drosophila melanogaster nearly matches the structure determined by comparative sequence analysis.  相似文献   

16.
RNA secondary-structure folding algorithms predict the existence of connected networks of RNA sequences with identical secondary structures. Fitness landscapes that are based on the mapping between RNA sequence and RNA secondary structure hence have many neutral paths. A neutral walk on these fitness landscapes gives access to a virtually unlimited number of secondary structures that are a single point mutation from the neutral path. This shows that neutral evolution explores phenotype space and can play a role in adaptation. Received: 23 December 1995 / Accepted: 17 March 1996  相似文献   

17.
特异亲和活性蓝染料的小分子RNA的SELEX筛选   总被引:4,自引:1,他引:4  
化学合成含有20 个核苷酸随机序列, 长度为73 个核苷酸的单链 D N A 随机库; P C R 扩增和双链化后, T7 R N A 聚合酶体外转录得到单链 R N A 随机库。以活性蓝染料凝胶柱为筛选介质, 体外进化方法筛选特异亲和活性蓝染料的 R N A 分子。经8 轮循环筛选, R N A 群体亲和染料的比例从小于0 .03 % 上升至22 .4 % 。克隆筛选出 R N A 序列后, 测定了30 个克隆的序列, 得到三类 R N A 分子。经二级结构分析和活性蓝染料特异亲和能力测试,发现 R N A 特异亲和活性蓝染料的主要结构因素是 R N A 形成的双链结构  相似文献   

18.
In vitro selection of functional RNAs from large random sequence pools has led to the identification of many ligand-binding and catalytic RNAs. However, the structural diversity in random pools is not well understood. Such an understanding is a prerequisite for designing sequence pools to increase the probability of finding complex functional RNA by in vitro selection techniques. Toward this goal, we have generated by computer five random pools of RNA sequences of length up to 100 nt to mimic experiments and characterized the distribution of associated secondary structural motifs using sets of possible RNA tree structures derived from graph theory techniques. Our results show that such random pools heavily favor simple topological structures: For example, linear stem-loop and low-branching motifs are favored rather than complex structures with high-order junctions, as confirmed by known aptamers. Moreover, we quantify the rise of structural complexity with sequence length and report the dominant class of tree motifs (characterized by vertex number) for each pool. These analyses show not only that random pools do not lead to a uniform distribution of possible RNA secondary topologies; they point to avenues for designing pools with specific simple and complex structures in equal abundance in the goal of broadening the range of functional RNAs discovered by in vitro selection. Specifically, the optimal RNA sequence pool length to identify a structure with x stems is 20x.  相似文献   

19.
As one of the earliest problems in computational biology, RNA secondary structure prediction (sometimes referred to as "RNA folding") problem has attracted attention again, thanks to the recent discoveries of many novel non-coding RNA molecules. The two common approaches to this problem are de novo prediction of RNA secondary structure based on energy minimization and the consensus folding approach (computing the common secondary structure for a set of unaligned RNA sequences). Consensus folding algorithms work well when the correct seed alignment is part of the input to the problem. However, seed alignment itself is a challenging problem for diverged RNA families. In this paper, we propose a novel framework to predict the common secondary structure for unaligned RNA sequences. By matching putative stacks in RNA sequences, we make use of both primary sequence information and thermodynamic stability for prediction at the same time. We show that our method can predict the correct common RNA secondary structures even when we are given only a limited number of unaligned RNA sequences, and it outperforms current algorithms in sensitivity and accuracy.  相似文献   

20.
MOTIVATION: To predict the consensus secondary structure, possibly including pseudoknots, of a set of RNA unaligned sequences. RESULTS: We have designed a method based on a new representation of any RNA secondary structure as a set of structural relationships between the helices of the structure. We refer to this representation as a structural pattern. In a first step, we use thermodynamic parameters to select, for each sequence, the best secondary structures according to energy minimization and we represent each of them using its corresponding structural pattern. In a second step, we search for the repeated structural patterns, i.e. the largest structural patterns that occur in at least one sequence, i.e. included in at least one of the structural patterns associated to each sequence. Thanks to an efficient encoding of structural patterns, this search comes down to identifying the largest repeated word suffixes in a dictionary. In a third step, we compute the plausibility of each repeated structural pattern by checking if it occurs more frequently in the studied sequences than in random RNA sequences. We then suppose that the consensus secondary structure corresponds to the repeated structural pattern that displays the highest plausibility. We present several experiments concerning tRNA, fragments of 16S rRNA and 10Sa RNA (including pseudoknots); in each of them, we found the putative consensus secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号