首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Insertion specificity of mobile genetic elements is a rather complex aspect of DNA transposition, which, despite much progress towards its elucidation, still remains incompletely understood. We report here the results of a meta-analysis of IS2 target sites from genomic, phage, and plasmid DNA and find that newly acquired IS2 elements are consistently inserted around abrupt DNA compositional shifts, particularly in the form of switch sites of GC skew. The results presented in this study not only corroborate our previous observations that both the insertion sequence (IS) minicircle junction and target region adopt intrinsically bent conformations in IS2, but most interestingly, extend this requirement to other families of IS elements. Using this information, we were able to pinpoint regions with high propensity for transposition and to predict and detect, de novo, a novel IS2 insertion event in the 3′ region of the gfp gene of a reporter plasmid. We also found that during amplification of this plasmid, process parameters such as scale, culture growth phase, and medium composition exacerbate IS2 transposition, leading to contamination levels with potentially detrimental clinical effects. Overall, our findings provide new insights into the role of target DNA structure in the mechanism of transposition of IS elements and extend our understanding of how culture conditions are a relevant factor in the induction of genetic instability.  相似文献   

3.
Summary While insertion sequences (IS) in Escherichia coli transpose frequently to generate spontaneous insertion mutants, such mutations are rare in Salmonella typhimurium: the only documented insertion mutation is a hisD mutation caused by the Salmonella-specific IS element IS200. To obtain more examples of IS200 insertion mutations and to seek additional types of IS elements in Salmonella, we selected and characterized 422 independent, spontaneous His mutants and some 2100 additional mutants that are not necessarily independent. None of the mutants showed the absolute polar effect characteristic of insertion mutations or the reversion properties characteristic of insertions (low spontaneous reversion frequency and no reversion induction by chemical mutagens). A few mutants, showing a high spontaneous reversion frequency, were screened physically. No insertion mutations were found. Thus insertion mutations appear to be rare in S. typhimurium, in strong contrast to E. coli and despite the possession in Salmonella of at least one type of insertion element (IS200). These results suggest that in Salmonella transposition of the endogenous elements has been controlled. The transposition ability of the elements may have been reduced or favored target sites removed from the host genome.  相似文献   

4.
The sequence of IS4   总被引:16,自引:0,他引:16  
Summary IS-elements are devoid of easily recognizable transacting functions and exert their visible effects in the position cis only (recent reviews Calos and Miller 1980; Starlinger 1980). It has been a matter of debate, whether these elements encode functions for their own transposition. In the case of the E. coli IS-elements this could not easily be determined by genetic methods, because most of these elements are present in several copies (Saedler and Heiss 1973; Deonier et al. 1979). In the case of the IS-elements flanking transposons, evidence has recently been brought forward that these carry the transposition specificity (Rothstein et al. 1980; Kleckner 1980; Grindley 1981).IS4 is present in one copy only in several E. coli K12 strains and should, therefore, be suitable for genetic and physiological studies (Chadwell et al. 1979). It has been cloned from several sites on the E. coli chromosome in pBR322 (Klaer and Starlinger 1980). Here we report the DNA sequence of IS4 which contains an open reading frame for 442 amino acids, and of the junctions of this element with surrounding DNA at three different sites in E. coli chromosome.  相似文献   

5.
Isolation and characterization of four different insertion sequence (IS) elements fromPseudomonas glumaeMAFF 302744 through transposition into the entrapment vector pSHI1063 are described. One of the elements, IS1416,was further characterized. IS1416is 1322 bp long and carries 29-bp terminal inverted repeats flanked by a 3-bp direct duplication. IS1416contains three open reading frames (ORFs), which are designated ORFA1, ORFA2, and ORFB, on one strand. Both DNA sequence of IS1416and the deduced amino acid sequences of its ORFs strongly suggest that IS1416is a member of the IS3family, and is closely related to IS401fromPseudomonas cepaciaand IS51fromPseudomonas syringae.To our knowledge, IS1416is the first IS element isolated fromP. glumae.The gene organization and possible regulation of transposition functions of IS1416are also discussed.  相似文献   

6.
The isolation and characterization of an insertion sequence (IS) element, IS427, from Agrobacterium tumefaciens T37 is described. IS427 is present in three nonidentical copies on the pTiT37 plasmid. The copy that was isolated through transposition on the entrapment vector pUCD800 contains at its ends a 16-bp imperfect inverted repeat and generates a 2-bp duplication of the target DNA. IS427 does not show homology with previously characterized IS elements of A. tumefaciens, based on hybridization experiments and/or sequence comparison.  相似文献   

7.
Transposon Tn10 is a composite element in which two individual insertion sequence (IS)-like sequences cooperate to mediate transposition of the intervening material. The two flanking IS10 elements are not identical; IS10-right is responsible for functions required to promote transposition, and IS10-left is defective in transposition functions. We suggest that the two IS10 elements were originally identical in sequence and have subsequently diverged. IS10-right is compactly organized with structural gene(s), promoters, and sites important for transposition and (presumably) its regulation all closely linked and, in some cases, overlapping. IS10 has a single major coding region that almost certainly encodes an essential transposition function. A pair of opposing promoters flank the start of this coding region. One of these promoters is responsible for expression in vivo of transposon-encoded transposition functions. We propose that the second promoter is involved in modulation of Tn10 transposition. Genetic analysis suggests that transposon-encoded function(s) may be preferentially cis-acting. Insertion of Tn10 into particular preferred target sites is due primarily to the occurrence of a particular six-base pair target DNA sequence. The properties of this sequence suggest that symmetrically disposed subunits of a single protein may be responsible for both recognition and cleavage of target DNA during insertion.  相似文献   

8.
Transposable elements belonging to the recently identified IS200/IS605 family radically differ from classical insertion sequences in their transposition mechanism by strictly requiring single‐stranded DNA substrates. This IS family includes elements encoding only the transposase (TnpA), and others, like ISDra2 from Deinococcus radiodurans, which contain a second gene, tnpB, dispensable for transposition and of unknown function to date. Here, we show that TnpB has an inhibitory effect on the excision and insertion steps of ISDra2 transposition. This inhibitory action of TnpB was maintained when ISDra2 transposition was induced by γ‐irradiation of the host cells and required the integrity of its putative zinc finger motif. We also demonstrate the negative role of TnpB when ISDra2 transposition was monitored in a heterologous Escherichia coli host, indicating that TnpB‐mediated inhibition does not involve Deinococcus‐specific factors. TnpB therefore appears to play a regulatory role in ISDra2 transposition.  相似文献   

9.
Insertion sequence (IS) elements are mobile genetic elements found in prokaryotes. We have identified a repetitive element from Mycoplasma pulmonis, a murine pathogen, that is similar to eubacterial IS elements. By subcloning a single strain of M. pulmonis, we isolated a variant clone in which the IS element had undergone an apparent transposition event. The nucleotide sequences of the element, designated IS 1138, and the target site into which it inserted were determined. IS1138 consists of 1288bp with 18bp perfect terminal inverted repeats. Sequence analysis of the target site before and after insertion of IS1138 identified a 3bp duplication of target DNA flanking the element. The predicted amino acids encoded by the major open reading frame of IS 1138 share significant similarity with the transposases of the IS3 family. Southern hybridization analysis indicates that repetitive sequences similar to IS 1138 are present in most, if not all, strains of M. pulmonis, but Is1138–like sequences were not detected in other mycoplasmal species.  相似文献   

10.
Summary Several lines of evidence were obtained that the previously identified, repeated sequence RS 1100 of Pseudomonas cepacia strain AC1100 undergoes transposition events. DNA sequences flanking the chlorohydroxy hydroquinone (CHQ) degradative genes of this organism were examined from sources, including several independently isolated cosmid clones from an AC1100 genomic library and genomic DNAs of two independently maintained wild-type AC1100 isolates. Hybridization and restriction endonuclease mapping studies revealed these sequences to be similar except for their numbers and distributions of RS1100 copies. A recombinant plasmid containing the immediate chq gene region and excluding any copies of RS1100 was conjugated into AC1100 mutant RHA5 which was shown to have undergone a deletion of its corresponding DNA. Hybridization and restriction mapping analyses of several reisolated plasmids revealed the presence of RS1100 sequences at different positions within either the vector or insert portions. One such plasmid contained tandem copies of RS1100 with an intervening DNA sequence also of AC1100 origin. Similar experiments involving introduction of the promoter probe plasmid pKT240 into wild-type AC1100 cells resulted in the acquisition of high-concentration streptomycin resistance by a number of recipients. The reisolated plasmids in most cases also conferred streptomycin resistance to Escherichia coli transformants and in each case were found to contain insertions close to the upstream portion of the aphC structural gene. These insertions alternatively contained RS1100 sequences or a newly identified 3400 by repeated sequence from AC1100. Based on these results, RS1100 has been redesignated as insertion sequence IS931 and the 3400 bp repeated sequence has been designated as IS932.[/ab]Abbreviations aphc aminoglycoside phosphotransferase gene - BSM basal salts medium - chq chlorohydroxy hydroquinone degradative gene(s) - dCTP deoxycytidine triphosphate - IS insertion sequence - Tft 2,4,5-T degradative phenotype  相似文献   

11.
IS30, a new insertion sequence of Escherichia coli K12   总被引:6,自引:0,他引:6  
Summary Three independent spontaneous mutations of prophage P1 affecting the ability of the phage to reproduce vegetatively are due to the insertion of a mobile genetic element, called IS 30. The same sequence is also carried in the R plasmid NR 1-Basel, but not in the parental plasmid NR 1. Southern hybridisation study indicates that the Escherichia coli K 12 chromosome carries several copies of IS 30 as a normal resident. IS 30 is 1.2 kb long and contains unique restriction cleavage sites for Bg/II, ClaI, HindIII, NciI and HincII, and it is cleaved twice by the enzymes HpaII and TaqI. The ends of IS 30 are formed by 26 bp long inverted repeats with 3 bases mismatched. Upon transposition IS 30 generates a duplication of only 2 bp of the target. The following observations suggest a pronounced specificity in target selection by IS 30. In transposition to the phage P 1 genome a single integration site was used three times independently, and in both orientations. A short region of sequence homology has been identified between the P 1 and NR 1-Basel insertion sites. IS 30 has mediated cointegration as well as deletion. The entire IS 30 sequences were duplicated in the cointegrates between a pBR 322 derivative containing IS 30 and the genome of phage P 1–15, and several loci on the P1–15 genome served as fusion sites, some of which were used more than once.  相似文献   

12.
An insertion sequence (here called IS 1031A) from Acetobacter xylinum ATCC 23769 has recently been isolated. This study describes the complete nucleotide sequence of IS 1031A as well as the sequences of two novel iso-IS 1031 elements, IS1031C and IS1031D, from A. xylinum ATCC 23769. The three ISs are all exactly 930 bp long, have imperfect terminal inverted repeats of 24 bp for IS1031A and 21 bp for IS1031C and IS1031D, are flanked by three base pair direct repeats, and contain an open reading frame encoding a putative basic protein of 278 amino acids. Because of nucleotide substitutions, IS1031C and IS1031D differ from IS 1031A by 12.9% while IS1031C differs from IS1031D by only 0.6%. Hybridization analyses of total DNA from nine A. xylinum strains showed that all strains contained IS 1031-like elements varying in copy number from three to at least 16. None of three Acetobacter aceti strains examined contained IS1031-like elements. Taken together, the results suggest that A. xylinum contains a family of IS 1031 elements with considerably diversified nucleotide sequences.  相似文献   

13.
The complete nucleotide sequence of insertion element IS492, which causes reversible inactivation of extracellular polysaccharide production in the marine bacterium Pseudomonas atlantica, is presented. Insertion of IS492 results in the EPS- phenotype, and excision results in restoration of EPS+. DNA sequencing of the site of insertion in the eps locus showed that insertion of IS492 generates a 5-base-pair repeat and that its excision is precise. IS492 is 1,202 nucleotides in length and contains one large open reading frame encoding a protein of 318 amino acids, a candidate for transposition function. No similarity between IS492 and other transposable elements has been found. Unlike the situation with other insertion sequences, no direct or inverted repeats exist at the termini of IS492.  相似文献   

14.
Integration of plasmid pCGL320 into a Corynebacterium glutamicum ATCC21086 derivative led to tandem amplification of the inserted plasmid (Labarre et a/., 1993). One amplification event was associated with integration of an insertion sequence that we have named IS 1206. Hybridizing sequences were only found in C. glutamicum strains and at various copy numbers. IS1206 is 1290bp long, carries 32 bp imperfect inverted repeats and generates a 3bp duplication of the target DNA upon insertion. IS1206 presents the features characteristic of the IS3 family and part of the DNA sequence centering on the putative transposase region (orfB) is similar to those of IS3 and some other related elements. Phylogenetic analysis of orfB deduced protein sequences from IS 1206 and IS3-related elements contradicts the phylogeny of the species, suggesting that evolution of these elements might be complex. Horizontal transfer could be invoked but other alternatives like ancestral polymorphism or/and different rates of evolution could also be involved.  相似文献   

15.
IS200: a Salmonella-specific insertion sequence   总被引:26,自引:0,他引:26  
S Lam  J R Roth 《Cell》1983,34(3):951-960
A new IS element (IS200) has been identified in Salmonella. The sequence was identified as an IS element by the following criteria: its insertion caused the mutation hisD984; six copies of the sequence are present in strain LT2 of S. typhimurium; and transposition of the sequence has been observed on several occasions. IS200 is found in almost all Salmonella species examined but is absent from most other enteric bacteria. The specificity of this element for Salmonella (and the absence of IS1-IS4 from Salmonella) suggest that transfer of insertion sequences between bacterial groups may be less extensive than is commonly believed. Alternatively, the distribution may suggest that these elements play a selectively important role in bacteria.  相似文献   

16.
The regulatory role of the IS 1-encoded InsA protein in transposition   总被引:18,自引:4,他引:14  
We show here that the protein InsA, which is encoded by IS 1 and binds specifically to the terminal inverted repeats of this insertion sequence, negatively regulates IS 1 transposition activity. We demonstrate that it inhibits both IS 1-mediated cointegrate formation and transposition of a synthetic IS 1-based transposon (‘omegon’Ω-on). These results also indicate that the Ω-on which does not itself encode IS 1 transposition functions can be complemented in trans, presumably by the copies of IS 1 resident in the Escherichia coli chromosome. Using insA-lacZ gene fusions, we show that at least part of this effect can be explained by the ability of InsA to repress expression of IS 1-encoded genes both in cis or in trans. The experiments involving Ω-on transposition raise the possibility that InsA inhibits transposition directly by competition with the transposase for their cognate site within the ends of IS 1.  相似文献   

17.
A reference collection of 71 natural isolates of Escherichia coli (the ECOR collection) has been studied with respect to the distribution and abundance of transposable insertion sequences using DNA hybridization. The data include 1173 occurrences of six unrelated insertion sequences (IS1, IS2, IS3, IS4, IS5 and IS30). The number of insertion elements per strain, and the sizes of DNA restriction fragments containing them, is highly variable and can be used to discriminate even among closely related strains. The occurrence and abundance of pairs of unrelated insertion sequences are apparently statistically independent, but significant correlations result from stratifications in the reference collection. However, there is a highly significant positive association among the insertion sequences considered in the aggregate. Nine branching process models, which differ in assumptions regarding the regulation of transposition and the effect of copy number on fitness, have been evaluated with regard to their fit of the observed distributions. No single model fits all copy number distributions. The best models incorporate no regulation of transposition and a moderate to strong decrease in fitness with increasing copy number for IS1 and IS5, strong regulation of transposition and a negligible to weak decrease in fitness with increasing copy number for IS3, and less than strong regulation of transposition for IS2, IS4 and IS30.  相似文献   

18.
19.
We have determined the nucleotide sequence of IS427, an insertion sequence from Agrobacterium tumefaciens T37, IS427 is 1271 bp long, contains 16-bp imperfect terminal inverted repeats, and generates a 2-bp target sequence duplication. It is present at three sites in the pTiT37 plasmid and is absent from the chromosome of A. tumefaciens T37. Each of the IS427 elements sequenced was near a site with sequence homology to integration host factor (IHF)-binding sites which suggested that IHF may be involved in IS427 transposition.  相似文献   

20.
An efficient and quantitative method to analyze the transposition of various insertion sequence (IS) elements in Burkholderia multivorans ATCC 17616 was devised. pGEN500, a plasmid carrying a Bacillus subtilis-derived sacB gene, was introduced into ATCC 17616 cells, and 25% of their sucrose-resistant derivatives were found to carry various IS elements on pGEN500. A PCR-based experimental protocol, in which a mixture of several specific primer pairs was used, revealed that pGEN500 captured, in addition to five previously reported IS elements (IS401, IS402, IS406, IS407, and IS408), three novel IS elements, ISBmu1, ISBmu2, and ISBmu3. The global transposition frequency of these IS elements was enhanced more than sevenfold under a high-temperature condition (42°C) but not under oxidative stress or starvation conditions. To our knowledge, this is the first report demonstrating the elevated transposition activities of several IS elements at a high temperature. The efficient experimental protocol developed in this study will be useful in quantitatively and simultaneously investigating various IS elements, as well as in capturing novel functional mobile elements from a wide variety of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号