首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The direct interaction of the Escherichia coli cytotoxin RelE with its specific antidote, RelB, was demonstrated in two ways: (i) copurification of the two proteins and (ii) a positive yeast two-hybrid assay involving the relB and relE genes. In addition, the purified RelE protein exhibited ribosome-binding activity in an in vitro assay, supporting previous observations suggesting that it is an inhibitor of translation.  相似文献   

4.
5.
Bacterial toxin RelE induces apoptosis in human cells   总被引:4,自引:0,他引:4  
The bacterial protein RelE severely restricts prokaryotic cell growth, probably by acting as a global inhibitor of translation. It is ubiquitous in prokaryotes as part of the RelE-RelB toxin-antitoxin system, and may be activated by nutritional stress. When the relE gene from Escherichia coli was expressed inducibly in a human osteosarcoma cell line, it was shown to retard growth and to lead to cell death by apoptosis. RelE is therefore unusual among bacterial toxins in possessing broad activity against both prokaryotes and eukaryotes, perhaps by acting on evolutionarily conserved components of the translation machinery.  相似文献   

6.
Escherichia coli encodes two rel loci, both of which contribute to the control of synthesis of macromolecules during amino acid starvation. The product of relA (ppGpp synthetase I) is responsible for the synthesis of guanosine tetraphosphate, ppGpp, the signal molecule that exerts stringent control of stable RNA synthesis. The second rel locus, relBE, was identified by mutations in relB that confer a so-called 'delayed-relaxed response' characterized by continued RNA synthesis after a lag period of approximately 10 min after the onset of amino acid starvation. We show here that the delayed-relaxed response is a consequence of hyperactivation of RelE. As in wild-type cells, [ppGpp] increased sharply in relB101 relE cells after the onset of starvation, but returned rapidly to the prestarvation level. RelE is a global inhibitor of translation that is neutralized by RelB by direct protein-protein interaction. Lon protease activates RelE during amino acid starvation by degradation of RelB. We found that mutations in relB that conferred the delayed-relaxed phenotype destabilized RelB. Such mutations confer severe RelE-dependent inhibition of translation during amino acid starvation, indicating hyperactivation of RelE. Hyperactivation of RelE during amino acid starvation was shown directly by measurement of RelE-mediated cleavage of tmRNA. The RelE-mediated shutdown of translation terminated amino acid consumption and explains the rapid restoration of the ppGpp level observed in relB mutant cells. Restoration of the prestarvation level of ppGpp, in turn, allows for the resumption of stable RNA synthesis seen during the delayed-relaxed response.  相似文献   

7.
8.
9.
Escherichia coli contains operons called "addiction modules," encoding toxin and antitoxin, which are responsible for growth arrest and cell death. Here, we demonstrate that MazF toxin encoded by "mazEF addiction module" is a sequence-specific (ACA) endoribonuclease functional only for single-stranded RNA. MazF works as a ribonuclease independent of ribosomes, and is, therefore, functionally distinct from RelE, another E. coli toxin, which assists mRNA cleavage at the A site on ribosomes. Upon induction, MazF cleaves whole cellular mRNAs to efficiently block protein synthesis. Purified MazF inhibited protein synthesis in both prokaryotic and eukaryotic cell-free systems. This inhibition was released by MazE, the labile antitoxin against MazF. Thus, MazF functions as a toxic endoribonuclease to interfere with the function of cellular mRNAs by cleaving them at specific sequences leading to rapid cell growth arrest and cell death. The role of such endoribonucleases may have broad implication in cell physiology under various growth conditions.  相似文献   

10.
11.
The pem locus is responsible for stable maintenance of plasmid R100 and consists of two genes, pemI and pemK. The pemK gene product is a growth inhibitor, while the pemI gene product is a suppressor of this inhibitory function. We found that the PemI amino acid sequence is homologous to two open reading frames from Escherichia coli called mazE and orf-83, which are located at 60 and 100 min on the chromosome, respectively. We cloned and sequenced these loci and found additional open reading frames, one downstream of each pemI homolog, both of which encode proteins homologous to PemK. The pem locus homolog at 60 min was named chpA and consists of two genes, chpAI and chpAK; the other, at 100 min, was named chpB and consists of two genes, chpBI and chpBK. The distal portion of chpBK was found to be adjacent to the ppa gene that encodes pyrophosphatase, whose map position had not been previously determined. We then demonstrated that the chpAK and chpBK genes encode growth inhibitors, while the chpAI and chpBI genes encode suppressors for the inhibitory function of the ChpAK and ChpBK proteins, respectively. These E. coli pem locus homologs may be involved in regulation of cell growth.  相似文献   

12.
13.
14.
RelE of Escherichia coli is a global inhibitor of translation that is activated by nutritional stress. Activation of RelE depends on Lon-mediated degradation of RelB, the antagonist that neutralizes RelE. In vitro, RelE cleaves synthetic mRNAs positioned at the ribosomal A-site. We show here that in vivo overexpression of RelE confers cleavage of mRNA and tmRNA in their coding regions. RelE-mediated cleavage depended on translation of the RNAs and occurred at both sense and stop codons. RelE cleavage of mRNA and tmRNA was also induced by amino acid starvation. An ssrA deletion strain was hypersensitive to RelE, whereas overproduction of tmRNA counteracted RelE toxicity. After neutralization of RelE by RelB, rapid recovery of translation required tmRNA, indicating that tmRNA alleviated RelE toxicity by rescuing ribosomes stalled on damaged mRNAs. RelE proteins from Gram-positive Bacteria and Archaea cleaved tmRNA with a pattern similar to that of E. coli RelE, suggesting that the function and target of RelE may be conserved across the prokaryotic domains.  相似文献   

15.
16.
Prokaryotic toxin–antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro but does not cleave pure RNA in vitro. RelE exhibits an incomplete RNase fold that may explain why RelE requires its substrate mRNA to presented by the ribosome. In contrast, RelE homologue YoeB has a complete RNase fold and cleaves RNA independently of ribosomes in vitro. Here, we show that YoeB cleavage of mRNA is strictly dependent on translation of the mRNA in vivo. Non-translated model mRNAs were not cleaved whereas the corresponding wild-type mRNAs were cleaved efficiently. Model mRNAs carrying frameshift mutations exhibited a YoeB-mediated cleavage pattern consistent with the reading frameshift thus giving strong evidence that YoeB cleavage specificity was determined by the translational reading frame. In contrast, site-specific mRNA cleavage by MazF occurred independently of translation. In one case, translation seriously influenced MazF cleavage efficiency, thus solving a previous apparent paradox. We propose that translation enhances MazF-mediated cleavage of mRNA by destabilization of the mRNA secondary structure.  相似文献   

17.
Bacteria show remarkable adaptability under several stressful conditions by shifting themselves into a dormant state. Less is known, however, about the mechanism underlying the cell transition to dormancy. Here, we report that the transition to dormant states is mediated by one of the major toxin-antitoxin systems, RelEB, in a cell density-dependent manner in Escherichia coli K-12 MG1655. We constructed a strain, IKA121, which expresses the toxin RelE in the presence of rhamnose and lacks chromosomal relBE and rhaBAD. With this strain, we demonstrated that RelE-mediated dormancy is enhanced at high cell densities compared to that at low cell densities. The initiation of expression of the antitoxin RelB from a plasmid, pCA24N, reversed RelE-mediated dormancy in bacterial cultures. The activation of RelE increased the appearance of persister cells against β-lactams, quinolones, and aminoglycosides, and more persister cells appeared at high cell densities than at low cell densities. Further analysis indicated that amino acid starvation and an uncharacterized extracellular heat-labile substance promote RelE-mediated dormancy. This is a first report on the induction of RelE-mediated dormancy by high cell density. This work establishes a population-based dormancy mechanism to help explain E. coli survival in stressful environments.  相似文献   

18.
19.
20.
mazEF is a stress-induced toxin-antitoxin module, located on the chromosome of Escherichia coli, that we have previously described to be responsible for programmed cell death in E. coli. mazF specifies a stable toxin, and mazE specifies a labile antitoxin. Recently, it was reported that inhibition of translation and cell growth by ectopic overexpression of the toxin MazF can be reversed by the action of the antitoxin MazE ectopically overexpressed at a later time. Based on these results, it was suggested that rather than inducing cell death, mazF induces a state of reversible bacteriostasis (K. Pederson, S. K. Christensen, and K. Gerdes, Mol. Microbiol. 45:501-510, 2002). Using a similar ectopic overexpression system, we show here that overexpression of MazE could reverse MazF lethality only over a short window of time. The size of that window depended on the nature of the medium in which MazF was overexpressed. Thus, we found "a point of no return," which occurred sooner in minimal M9 medium than it did in the rich Luria-Bertani medium. We also describe a state in which the effect of MazF on translation could be separated from its effect on cell death: MazE overproduction could completely reverse the inhibitory effect of MazF on translation, while not affecting the bacteriocidic effect of MazF at all. Our results reported here support our view that the mazEF module mediates cell death and is part of a programmed cell death network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号