首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The purine metabolic gene adenosine deaminase (ADA) is expressed at high levels in a well-defined spatiotemporal pattern in the villous epithelium of proximal small intestine. A duodenum-specific enhancer module responsible for this expression pattern has been identified in the second intron of the human ADA gene. It has previously been shown that binding of the factor PDX-1 is essential for function of this enhancer. The studies presented here examine the proposed roles of GATA factors in the enhancer. Site-directed mutagenesis of the enhancer's GATA binding sites crippled enhancer function in 10 lines of transgenic mice, with 9 of the lines demonstrating <1% of normal activity. Detailed studies along the longitudinal axis of mouse small intestine indicate that GATA-4 and GATA-5 mRNA levels display a reciprocal pattern, with low levels of GATA-6 throughout. Interestingly, gel shift studies with duodenal nuclear extracts showed binding only by GATA-4.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The ability of the GATA family of factors to interact with numerous other factors, co-factors, and repressors suggests that they may play key roles in tissues and cells where they are expressed. Adult mouse small intestine has been shown to express GATA-4, GATA-5, and GATA-6, where they have been implicated in the activation of a number of intestinal genes. Determination of which GATA factor(s) are involved in a specific function in tissues expressing multiple family members has proven difficult. The immunohistochemical analysis presented here demonstrate that within the mouse small intestine GATA-4/-5/-6 are found to be uniquely distributed among the various differentiated lineages of the intestinal epithelium. Among differentiated cells GATA-4 is found only in the villous enterocytes. GATA-5 is absent from enterocytes, but was found in the remaining lineages: goblet, Paneth and enteroendocrine. Additionally, high levels of GATA-6 are found in only one of these differentiated cell types, the enteroendocrine lineage. The observed distribution suggests that the GATA factors may have distinct roles in lineage allocation, lineage maintenance, and/or terminal differentiation events in small intestine.  相似文献   

18.
19.
20.
Impaired adipogenesis plays an important role in the development of obesity-associated insulin resistance and type 2 diabetes. Adipose tissue inflammation is a crucial mediator of this process. GATA-3 plays important roles in adipogenesis and inflammation. The aim of this study is to investigate the impact of GATA-3 suppression on improving adipogenesis, lowering inflammation and reversing insulin resistance. GATA-3 levels were measured in subcutaneous (SC) and omental (OM) adipose tissues obtained from insulin sensitive (IS) and insulin resistant (IR) obese individuals during weight reduction surgeries. The effect of GATA-3 suppression on adipogenesis, expression of inflammatory cytokines and insulin resistance biomarkers was performed in 3T3L-1 mouse preadipocytes via transfection with GATA-3-specific DNAzyme. GATA-3 expression was higher in OM compared to SC adipose tissues and in stromal vascular fraction-derived differentiating preadipocytes from IR obese individuals compared to their IS counterparts. Suppression of GATA-3 expression in 3T3L-1 mouse preadipocytes with GATA-3 specific inhibitor reversed 4-hydroxynonenal-induced impaired adipogenesis and triggered changes in the expression of insulin signaling-related genes. GATA-3 inhibition also modulated the expression of IL-6 and IL-10 and lowered the expression of insulin resistance biomarkers (PAI-1 and resistin) and insulin resistance phosphoproteins (p-BAD, p-PTEN and p-GSK3β). Inhibiting GATA-3 improves adipocytes differentiation, modulates the secretion of inflammatory cytokines and improves insulin sensitivity in insulin resistant cells. Suppression of GATA-3 could be a promising tool to improve adipogenesis, restore insulin sensitivity and lower obesity-associated inflammation in insulin resistant individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号