首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new dissection procedure for preparing Myxicola giant axons for observation under voltage clamp is described. Preparation time is generally 40–45 min. 65–70% of the preparations attempted may be brought through the entire procedure, including insertion of the long internal electrode, and support an initial action potential amplitude of 100 mv or greater. Mean values for axon diameter, resting membrane potential, action potential amplitude, maximum peak inward transient current, and resting membrane resistance are 560 µ, —66.5 mv, 112 mv, 0.87 ma/cm2 and 1.22 KΩ cm 2 respectively. Cut branches do not seem to be a problem in this preparation. Behavior under voltage clamp is reasonably stable over several hours. Reductions in maximum inward transient current of 10% and in steady-state current of 5–10% are expected in the absence of any particular treatment. Tetrodotoxin blocks the action potential and both the inward and outward transient current, but has no effect on either the resting membrane potential or the steady-state current. This selective action of tetrodotoxin on the transient current is taken as an indication that this current component is probably carried by Na.  相似文献   

2.
Axon voltage-clamp simulations. A multicellular preparation.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

3.
Supercharging: a method for improving patch-clamp performance.   总被引:5,自引:1,他引:4       下载免费PDF全文
Patch-clamp performance can be improved without altering the normal headstage configuration described by (Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, 1981, Pfluegers Arch. Eur. J. Physiol., 391:85-100). The "supercharging" method permits resolution of such fast events as calcium and sodium tail currents. Digital computer modeling and analog electronic simulation were used to identify appropriate shapes for the command voltage and the voltage applied to a capacitor tied to the input of the headstage. The voltage command pulse consists of a step with a brief (5-15 microseconds) rectangular spike on its leading edge. Spike amplitude is a function of the membrane capacitance and the access resistance. The spike drives current through the access resistance and speeds charging of the membrane capacitance, making it possible to complete a voltage step within 5-15 microseconds. Clamping speed is independent of the electrode and feedback resistance over a wide range. The second function of the patch clamp amplifier is current measurement, and good time resolution requires suppression of the capacity transient. This can be accomplished by applying an appropriately shaped voltage to the small capacitor tied to the input of the headstage. Series resistance compensation for ionic current transients does not interfere with supercharging. Although the focus of this paper is on whole cell recording, the supercharging concept may prove useful for single channel and bilayer recording techniques.  相似文献   

4.
The effects of serotonin (5-HT) on membrane potential, membrane resistance, and select ionic currents were examined in large pedal neurons (LP1, LP3) of the mollusk Hermissenda. Calcium (Ca) action potentials were evoked in sodium-free artificial seawater containing tetramethylammonium, tetraethylammonium, and 4-aminopyridine (0-Na, 4-AP, TEA ASW). They failed at stimulation rates greater than 0.5/sec and were blocked by cadmium (Cd). Under voltage clamp the calcium current (ICa) responsible for them also failed with repeated stimulation. Thus, ICa inactivation accounts for refractoriness of the Ca action potential. The addition of 10 microM 5-HT to 0-Na, 4-AP, TEA ASW produced a slight depolarization and increased excitability and input resistance. Under voltage clamp the background current decreased. The voltage-dependent inward, late outward, and outward tail currents, sensitive to Cd, increased. ICa inactivation persisted. Under voltage clamp with Ca influx blocked by Cd, the addition of 10 microM 5-HT decreased the remaining current uniformly over membrane potentials of -10 to -100 mV. Thus, 5-HT reduces a background current that is active within the physiological range of the membrane potential, voltage insensitive, independent of Ca influx, noninactivating, and not blocked by 4-AP or TEA.  相似文献   

5.
Sodium Flux in Necturus Proximal Tubule under Voltage Clamp   总被引:6,自引:4,他引:2       下载免费PDF全文
Na transport and electrical properties of Necturus renal proximal tubules were analyzed, in vivo, by a voltage clamp method which utilizes an axial electrode in the tubule lumen for passage of current and simultaneous determination of net fluid (or Na) flux by the split droplet method. When the average spontaneous transepithelial potential difference of –8 mv (lumen negative) was reduced to zero by current passage, net Na flux doubled from a mean of 107 to 227 pmoles/cm2 per sec. The relationship between flux and potential over the range –25 to +10 mv was nonlinear, with flux equilibrium at –15 mv and droplet expansion at more negative values. Calculated Na permeability at flux equilibrium was 7.0 x 10–6 cm/sec. Voltage transients, similar to those caused by intraepithelial unstirred layers, were observed at the end of clamping periods. Tubular electrical resistance measured by brief square or triangle wave pulses (<100 msec) averaged 43 ohm cm2. The epithelial current-voltage relationship was linear over the range –100 to +100 mv, but displayed marked hysteresis during low frequency (<0.04 Hz) triangle wave clamps. The low transepithelial resistance and large opposing unidirectional ion fluxes suggest that passive ionic movements occur across extracellular shunt pathways, while the voltage transients and current-voltage hysteresis are consistent with the development of a local osmotic gradient within epithelium.  相似文献   

6.
The responses of pacemaker and nonpacemaker Aplysia neurons to voltage clamp commands of less than 200 msec duration are essentially identical. For moderate depolarizing commands there is an early inward transient current followed by a late outward current and an outward tail current when the membrane is clamped back to resting potential. On long (1–2 sec) commands in pacemakers there is a marked sag in the late current and an inward tail current. Etail, the potential of the membrane at which there is no net current flow under the conditions prevailing at the end of the clamp, shifts from about -9.0 mv on short commands to +5.0 mv on long commands. In contrast there is no marked sag of the late current or inward tail current on long commands in nonpacemakers, and Etail is near -9.0 mv for both short and long commands. The current sag and shift in Etail can be ascribed to a decreased conductance (presumably to K+) at the end of the long as compared to the short command in half of the pacemaker neurons. In the remaining cells the essential difference from nonpacemakers appears to be either a greater restricted extracellular space or a more active potential-dependent electrogenic Na+ pump in pacemakers.  相似文献   

7.
Transient increases in spontaneous firing rate of mesencephalic dopaminergic neurons have been suggested to act as a reward prediction error signal. A mechanism previously proposed involves subthreshold calcium-dependent oscillations in all parts of the neuron. In that mechanism, the natural frequency of oscillation varies with diameter of cell processes, so there is a wide variation of natural frequencies on the cell, but strong voltage coupling enforces a single frequency of oscillation under resting conditions. In previous work, mathematical analysis of a simpler system of oscillators showed that the chain of oscillators could produce transient dynamics in which the frequency of the coupled system increased temporarily, as seen in a biophysical model of the dopaminergic neuron. The transient dynamics was shown to be consequence of a slow drift along an invariant subset of phase space, with rate of drift given by a Lyapunov function. In this paper, we show that the same mathematical structure exists for the full biophysical model, giving physiological meaning to the slow drift and the Lyapunov function, which is shown to describe differences in intracellular calcium concentration in different parts of the cell. The duration of transients was long, being comparable to the time constant of calcium disposition. These results indicate that brief changes in input to the dopaminergic neuron can produce long lasting firing rate transients whose form is determined by intrinsic cell properties.  相似文献   

8.
Imanaka Y  Takeuchi H 《Chemical senses》2001,26(8):1023-1027
The whole-cell, patch clamp [corrected] method was applied to olfactory receptor cells in slice preparations made from bullfrog olfactory epithelium. Under voltage-clamp conditions, olfactory receptor cells showed a transient inward current followed by a steady outward current in response to depolarizing voltage steps, as has been shown in the isolated preparation. The input resistance was 5.4 +/- 3.9 GOmega and capacitance 21.9 +/- 9.7 pF. Under current-clamp conditions, depolarization of cells by current injection induced action potentials. In 13 out of 20, spike generation was repetitive with a maximum frequency of 24 Hz. The frequency of the repetitive discharges increased as the injected current was increased. The relationship between the size of the injected current and firing frequency could be well fitted by the Michaelis-Menten equation, indicating that the spike generation site lacks the non-linear boosting system. The slice preparation developed here would provide a powerful tool to study the spike encoding system of the olfactory receptor cells.  相似文献   

9.
Junctional resistance between coupled receptor cells in Necturus taste buds was estimated by modeling the results from single patch pipette voltage clamp studies on lingual slices. The membrane capacitance and input resistance of coupled taste receptor cells were measured to monitor electrical coupling and the results compared with those calculated by a simple model of electrically coupled taste cells. Coupled receptor cells were modeled by two identical receptor cells connected via a junctional resistance. On average, the junctional resistance was approximately 200-300 M omega. This was consistent with the electrophysiological recordings. A junctional resistance of 200-300 M omega is close to the threshold for Lucifer yellow dye-coupling detection (approximately 500 M omega). Therefore, the true extent of coupling in taste buds might be somewhat greater than that predicted from Lucifer yellow dye coupling. Due to the high input resistance of single taste receptor cells (> 1 G omega), a junctional resistance of 200-300 M omega assures a substantial electrical communication between coupled taste cells, suggesting that the electrical activity of coupled cells might be synchronized.  相似文献   

10.
The membrane potential of isolated muscle fibers was controlled with a two-electrode voltage clamp, and the radial extent of contraction elicited by depolarizing pulses of increasing magnitude was observed microscopically. Depolarizations of the fiber surface only 1–2 mv greater than the contraction threshold produced shortening throughout the entire cross-section of the muscle fiber. The radial spread of contraction was less effective in fibers exposed to tetrodotoxin or to a bathing medium with a greatly reduced sodium concentration. The results provide evidence that depolarization of a muscle fiber produces an increase in sodium conductance in the T tubule membrane and that the resultant sodium current contributes to the spread of depolarization along the T system.  相似文献   

11.
Bundles of sheep ventricular fibers were voltage-clamped utilizing a modified sucrose gap technique and intracellular voltage control. An action potential was fired off in the usual way, and the clamp circuit was switched on at preselected times during activity. Clamping the membrane back to its resting potential during the early part of an action potential resulted in a surge of inward current. The initial amplitude of this current surge decreased as the clamp was switched on progressively later during the action potential. Inward current decreasing as a function of time was also recorded if the membrane potential was clamped beyond the presumed K equilibrium potential (to -130 mv). Clamping the membrane to the inside positive range (+40 mv to +60 mv) at different times of an action potential resulted in a step of outward current which was not time-dependent. The results suggest that normal repolarization of sheep ventricle depends on a time-dependent decrease of inward current (Na, Ca) rather than on a time-dependent increase of outward current (K).  相似文献   

12.
To maximize the availability and usefulness of a small magnetic field exposure laboratory, we designed a magnetic field exposure system that has been used to test human subjects, caged or confined animals, and cell cultures. The magnetic field exposure system consists of three orthogonal pairs of coils 2 m square x 1 m separation, 1.751 m x 0.875 m separation, and 1.5 m x 0.75 m separation. Each coil consisted of ten turns of insulated 8 gauge stranded copper conductor. Each of the pairs were driven by a constant-current amplifier via digital to analog (D/A) converter. A 9 pole zero-gain active Bessel low-pass filter (1 kHz corner frequency) before the amplifier input attenuated the expected high frequencies generated by the D/A conversion. The magnetic field was monitored with a 3D fluxgate magnetometer (0-3 kHz, +/- 1 mT) through an analog to digital converter. Behavioral monitoring utilized two monochrome video cameras (viewing the coil center vertically and horizontally), both of which could be video recorded and real-time digitally Moving Picture Experts Group (MPEG) encoded to CD-ROM. Human postural sway (standing balance) was monitored with a 3D forceplate mounted on the floor, connected to an analog to digital converter. Lighting was provided by 12 offset overhead dimmable fluorescent track lights and monitored using a digitally connected spectroradiometer. The dc resistance, inductance of each coil pair connected in series were 1.5 m coil (0.27 Omega, 1.2 mH), 1.75 m coil (0.32 Omega, 1.4 mH), and 2 m coil (0.38 Omega, 1.6 mH). The frequency response of the 1.5 m coil set was 500 Hz at +/- 463 microT, 1 kHz at +/- 232 microT, 150 micros rise time from -200 microT(pk) to + 200 microT(pk) (square wave) and is limited by the maximum voltage ( +/- 146 V) of the amplifier (Bessel filter bypassed).  相似文献   

13.
The homogeneity of voltage clamp control in small bundles of frog atrial tissue under double sucrose-gap voltage clamp conditions was assessed by intracellular microelectrode potential measurements from cells in the test node region. The microelectrode potential measurements demonstrated that (1) good voltage control of the impaled cell existed in the absence of the excitatory inward currents (e.g., during small depolarizing clamp pulses of 10-15 mV), (2) voltage control of the impaled cell was lost during either the fast or slow excitatory inward currents, and (3) voltage control of the impaled cell was regained following the inward excitatory currents. Under nonvoltage clamp conditions the transgap recorded action potential had a magnitude and waveform similar to the intracellular microelectrode recorded action potentials from cells in the test node. Transgap impedance measured with a sine-wave voltage of 1,000 Hz was about 63% of that measured either by a sine-wave voltage of 10 Hz or by an action potential method used to determine the longitudinal resistance through the sucrose-gap region. The action potential data in conjunction with the impedance data indicate that the extracellular resistance (Rs) through the sucrose gap is very large with respect to the longitudinal intracellular resistance (Ri); the frequency dependence of the transgap impedance suggests that at least part of the intracellular resistance is paralleled by a capacitance. The severe loss of spatial voltage control during the excitatory inward current raises serious doubts concerning the use of the double sucrose-gap technique to voltage clamp frog atrial muscle.  相似文献   

14.
Voltage clamp analyses, combined with pharmacological tools demonstrate the independence of reactive Na and K channels in electrically excitable membrane of eel electroplaques. Spike electrogenesis is due to Na activation and is eliminated by tetrodotoxin or mussel poison, or by substituting choline, K, Cs, or Rb for Na in the medium. The K channels remain reactive, but K activation is always absent, the electroplaques responding only with K inactivation. This is indicated by an increased resistance when the membrane is depolarized by more than about 30 mv. The resting resistance (1 to 5 ohm cm2) is dependent upon the ionic conditions, but when K inactivation occurs the resistance becomes about 10 ohm cm2 in all conditions. K inactivation does not change the EMF significantly. The transition from low to high resistance may give rise to a negative-slope voltage current characteristic, and to regenerative inactivation responses under current clamp. The further demonstration that pharmacological K inactivation (by Cs or Rb) leaves Na activation and spike electrogenesis unaffected emphasizes the independence of the reactive processes and suggests different chemical compositions for the membrane structures through which they operate.  相似文献   

15.
Immature oocytes from rabbits were examined with electrophysiological techniques to determine if their membrane properties change during maturation. The input resistance increased and input capacitance decreased during maturation, although no significant change in membrane potential was observed. The changes observed were consistent with a decrease of corona radiata-oocyte electrical coupling accompanying maturation. Spontaneous transient depolarizations were recorded from immature oocytes surrounded by corona radiata, but not from mature ova. Each event consisted of a rapid depolarization, sustained for 1-100 sec, and a slow repolarization to the resting potential. Spontaneous inward currents with a time course similar to the spontaneous transient depolarizations occurred when the oocyte's membrane potential was held constant by voltage clamp. The frequency with which spontaneous transient depolarizations occurred decreased during maturation. These findings are consistent with a model in which spontaneous depolarizations originate in corona radiata cells and are detected in the oocyte via electrical coupling.  相似文献   

16.
Voltage clamping with a single microelectrode.   总被引:6,自引:0,他引:6  
A technique is described which allows neurons to be voltage clamped with a single microelectrode, and the advantages of this circuit with respect to conventional bridge techniques are discussed. In this circuit, the single microelectrode is rapidly switched from a current passing to a recording mode. The circuitry consists of: (1) an electronic switch; (2) a high impedance, ultralow input capacity amplifier; (3) a sample-and-hold module; (4) conventional voltage clamping circuitry. The closed electronic switch allows current to flow through the electrode. The switch then opens, and the electrode is in a recording mode. The low input capacity of the preamplifier allows the artifact from the current pulse to rapidly abate, after which time the circuit samples the membrane potential. This cycle is repeated at rates up to 10 kHz. The voltage clamping amplifier senses the output of the sample-and-hold module and adjusts the current pulse amplitude to maintain the desired membrane potential. The system was evaluated in Aplysia neurons by inserting two microelectrodes into a cell. One electrode was used to clamp the cell and the other to independently monitor membrane potential at a remote location in the soma.  相似文献   

17.
研究证明,传统膜片钳放大器在电流钳模式下记录到的快速电压信号会存在失真,且造成失真的根本原因是由于膜片钳的探头电路设计.为了克服这些缺陷重新设计了一种探头,新探头电路不仅能像传统的电压跟随器一样测量瞬态电压,而且适用于传统的电压钳工作模式.此外,一种命名为电压钳控制的电流钳技术被应用来改进传统的膜片钳放大器.用可变的低通滤波器来调整电压钳模块的响应速度,从而在实现膜电位钳位的同时准确记录快速电压信号.桥平衡电路用来消除命令电流流过串联电阻时带来的电压误差.而传统膜片钳中的快电容补偿环节则被改进用来补偿电极分布电容和探头放大器输入电容并提高电流钳模式下系统的响应速度.细胞模型实验结果表明,改进后的膜片钳放大器能够满足电生理研究中快速电位变化测量的需要.  相似文献   

18.
We analyzed inward Ca2+ currents in single bovine adrenal glomerulosa cell using whole-cell patch clamp techniques. Two types of voltage-gated Ca2+ channel currents were identified. One was a transient (T) type which decayed within 100 ms, characterized by a low threshold voltage (about -70 mv) similar to that seen in rat adrenal glomerulosa cells (Matsunaga, H. et al. (1987) Pflügers Arch. 408, 351-355.) Another was a long-lasting (L) type which shows a more positive threshold potential. The present results suggest that while T type Ca2+ channels may explain initial calcium influx in response to an elevation in extracellular K+, L type Ca2+ channels may allow sustained calcium influx which is necessary for sustained aldosterone secretion.  相似文献   

19.
The electrical potential difference across the human red cell membrane has been measured directly. A biological amplifier with neutralized input capacity was used. Human red cells in modified Ringer solution were impaled individually with 3 M KCl-filled glass microelectrodes. Movements of the microelectrodes were effected by Leitz micromanipulators. Results showed a potential difference of -8.0 ± 0.21 (SEM) mv, the inside being negative with respect to the outside. This value is approximately that calculated by using the Nernst equation considering the intracellular and extracellular chloride concentrations.

As a control, similar measurements were made on nylon microcapsules containing hemoglobin. The measured potential of -0.52 ± 0.02 (SEM) mv, which agreed very well with the value calculated on the basis of Donnan equilibrium, was much smaller in magnitude as compared to the results for the red cell, and there was evidence of fixed charges on the microcapsule membrane. There was no evidence of this in the case of the red cell.

  相似文献   

20.
Previous step voltage-clamp measurements on frog skin showed the presence of an N-shaped current-potential (I-V) relation in excitable skin. However, the collection and reconstruction of I-V data using discrete step changes of skin potential was tedious because of the long refractory period (up to 1 min) in frog skin. A direct and rapid (5 msec) method for recording the N-shaped I-V characteristic in real time is presented. Ramp functions are used as the command to the clamp system instead of a step function. Consequently the skin potential is forced to change in a linear manner (as commanded) and the skin current can be recorded as a continuous function of the controlled change of skin potential. With the ramp clamp, a low-resistance membrane state ( 10 Omega . cm(2)) resembling a breakdown phenomenon was observed at high skin potential ( 300 mv). Entry into the low resistance state resulted in a collapse of the N-shaped I-V relation to a nearly linear function. The utility of the ramp measurement is demonstrated by predicting (1) that the maximum rate of rise of the spike occurs at a voltage corresponding to the valley (local minimum) in the N-shaped I-V curve, (2) that the rate of rise of the spike increases with increasing clamp currents, (3) the voltage peak of the spike, and (4) the time course of the rising phase of the spike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号