共查询到20条相似文献,搜索用时 0 毫秒
1.
Wang L Yang W Ju W Wang P Zhao X Jenkins EC Brown WT Zhong N 《Biochemical and biophysical research communications》2012,417(4):1119-1126
The Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease characterized by segmental premature aging. Applying a two-dimensional chromatographic proteomic approach, the 2D Protein Fractionation System (PF2D), we identified 30 differentially expressed proteins in cultured HGPS fibroblasts. We categorized them into five groups: methylation, calcium ion binding, cytoskeleton, duplication, and regulation of apoptosis. Among these 30 proteins, 23 were down-regulated, while seven were up-regulated in HGPS fibroblasts as compared to normal fibroblasts. Three differentially expressed cytoskeleton proteins, vimentin, actin, and tubulin, were validated via Western blotting and characterized by immunostaining that revealed densely thickened bundles and irregular structures. Furthermore in the HGPS cells, the cell cycle G1 phase was elongated and the concentration of free cytosolic calcium was increased, suggesting intracellular retention of calcium. The results that we obtained have implications for understanding the aging process. 相似文献
2.
3.
Hutchinson-Gilford progeria syndrome (HGPS or progeria) is a very rare genetic disorder with clinical features suggestive of premature aging. Here, we show that induced expression of the most common HGPS mutation (LMNA c.1824C>T, p.G608G) results in a decreased epidermal population of adult stem cells and impaired wound healing in mice. Isolation and growth of primary keratinocytes from these mice demonstrated a reduced proliferative potential and ability to form colonies. Downregulation of the epidermal stem cell maintenance protein p63 with accompanying activation of DNA repair and premature senescence was the probable cause of this loss of adult stem cells. Additionally, upregulation of multiple genes in major inflammatory pathways indicated an activated inflammatory response. This response has also been associated with normal aging, emphasizing the importance of studying progeria to increase the understanding of the normal aging process. 相似文献
4.
《Autophagy》2013,9(1):147-151
While rapamycin has been in use for years in transplant patients as an antirejection drug, more recently it has shown promise in treating diseases of aging, such as neurodegenerative disorders and atherosclerosis. We recently reported that rapamycin reverses the cellular phenotype of fibroblasts from children with the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). We found that the causative aberrant protein, progerin, was cleared through autophagic mechanisms when the cells were treated with rapamycin, suggesting a new potential treatment for HGPS. Recent evidence shows that progerin is also present in aged tissues of healthy individuals, suggesting that progerin may contribute to physiological aging. While it is intriguing to speculate that rapamycin may affect normal aging in humans, as it does in lower organisms, it will be important to identify safer analogues of rapamycin for chronic treatments in humans in order to minimize toxicity. In addition to its role in HGPS and normal aging, we discuss the potential of rapamycin for the treatment of age-dependent neurodegenerative diseases. 相似文献
5.
A common feature of progeria syndromes is a premature aging phenotype and an enhanced accumulation of DNA damage arising from a compromised repair system. HGPS (Hutchinson-Gilford progeria syndrome) is a severe form of progeria in which patients accumulate progerin, a mutant lamin A protein derived from a splicing variant of the lamin A/C gene (LMNA). Progerin causes chromatin perturbations which result in the formation of DSBs (double-strand breaks) and abnormal DDR (DNA-damage response). In the present article, we review recent findings which resolve some mechanistic details of how progerin may disrupt DDR pathways in HGPS cells. We propose that progerin accumulation results in disruption of functions of some replication and repair factors, causing the mislocalization of XPA (xeroderma pigmentosum group A) protein to the replication forks, replication fork stalling and, subsequently, DNA DSBs. The binding of XPA to the stalled forks excludes normal binding by repair proteins, leading to DSB accumulation, which activates ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) checkpoints, and arresting cell-cycle progression. 相似文献
6.
While rapamycin has been in use for years in transplant patients as an antirejection drug, more recently it has shown promise in treating diseases of aging, such as neurodegenerative disorders and atherosclerosis. We recently reported that rapamycin reverses the cellular phenotype of fibroblasts from children with the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). We found that the causative aberrant protein, progerin, was cleared through autophagic mechanisms when the cells were treated with rapamycin, suggesting a new potential treatment for HGPS. Recent evidence shows that progerin is also present in aged tissues of healthy individuals, suggesting that progerin may contribute to physiological aging. While it is intriguing to speculate that rapamycin may affect normal aging in humans, as it does in lower organisms, it will be important to identify safer analogues of rapamycin for chronic treatments in humans in order to minimize toxicity. In addition to its role in HGPS and normal aging, we discuss the potential of rapamycin for the treatment of age-dependent neurodegenerative diseases. 相似文献
7.
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare disorder characterized by accelerated aging and early death, frequently from stroke or coronary artery disease. 90% of HGPS cases carry the LMNA G608G (GGC>GGT) mutation within exon 11 of LMNA, activating a splice donor site that results in production of a dominant negative form of lamin A protein, denoted progerin. Screening 150 skin biopsies from unaffected individuals (newborn to 97 years) showed that a similar splicing event occurs in vivo at a low level in the skin at all ages. While progerin mRNA remains low, the protein accumulates in the skin with age in a subset of dermal fibroblasts and in a few terminally differentiated keratinocytes. Progerin-positive fibroblasts localize near the basement membrane and in the papillary dermis of young adult skin; however, their numbers increase and their distribution reaches the deep reticular dermis in elderly skin. Our findings demonstrate that progerin expression is a biomarker of normal cellular aging and may potentially be linked to terminal differentiation and senescence in elderly individuals. 相似文献
8.
《Epigenetics》2013,8(1):28-33
DNA methylation gradiently changes with age and is likely to be involved in aging-related processes with subsequent phenotype changes and increased susceptibility to certain diseases. The Hutchinson-Gilford Progeria (HGP) and Werner Syndrome (WS) are two premature aging diseases showing features of common natural aging early in life. Mutations in the LMNA and WRN genes were associated to disease onset; however, for a subset of patients the underlying causative mechanisms remain elusive. We aimed to evaluate the role of epigenetic alteration on premature aging diseases by performing comprehensive DNA methylation profiling of HGP and WS patients. We observed profound changes in the DNA methylation landscapes of WRN and LMNA mutant patients, which were narrowed down to a set of aging related genes and processes. Although of low overall variance, non-mutant patients revealed differential DNA methylation at distinct loci. Hence, we propose DNA methylation to have an impact on premature aging diseases. 相似文献
9.
We report an 82-year-old girl with premature aging, a karyotype of 46,XX and a de novo c.1824C>T mutation encoding p.G608G in the lamin A gene. The clinical features of accelerated aging and the molecular finding were consistent with the diagnosis of Hutchinson-Gilford progeria syndrome (HGPS). In this presentation, we demonstrate the radiological imaging findings of skeletal, oral and craniofacial phenotypes of abnormalities associated with HGPS. The oral and craniofacial abnormalities caused dental caries, severe malocclusion, and swallowing, feeding and speech problems. Dural calcification, and granulation in the ear drum and external ear canal were additionally observed. 相似文献
10.
Proteomics has revealed differential protein expression and glycosylation in membrane proteins from premature aging Hutchinson-Gilford progeria syndrome fibroblasts (progeria). Progeria is a rare autosomal dominant genetic disorder of premature aging characterized by marked growth retardation and specific, progressive, premature senescent changes of the skin and other tissues. Affected children live to an average age of 13 years. The 1q20-24 region of chromosome 1 which codes for one of these proteins, lamin A/C, has previously been implicated by Brown et al. (1990) who described identical twins with progeria, where cytogenetic analysis showed an inverted insertion in the long arm of the chromosome in 70% of cells. Luengo et al. (2002) similarly reported an interstitial deletion of chromosome 1q23, in a 9-year-old patient with a classic clinical picture of progeria. 相似文献
11.
12.
Background
Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disorder. It arises from a single point mutation in the LMNA gene. This mutation stimulates an aberrant splicing event and produces progerin, an isoform of the lamin A protein. Accumulation of progerin disrupts numerous physiological pathways and induces defects in nuclear architecture, gene expression, histone modification, cell cycle regulation, mitochondrial functionality, genome integrity and much more.Objective
Among these phenotypes, genomic instability is tightly associated with physiological aging and considered a main contributor to the premature aging phenotypes. However, our understanding of the underlying molecular mechanisms of progerin-caused genome instability is far from clear.Results and Conclusion
In this review, we summarize some of the recent findings and discuss potential mechanisms through which, progerin affects DNA damage repair and leads to genome integrity.13.
Yang SH Qiao X Farber E Chang SY Fong LG Young SG 《The Journal of biological chemistry》2008,283(11):7094-7099
Hutchinson-Gilford progeria syndrome is caused by the synthesis of a mutant form of prelamin A, which is generally called progerin. Progerin is targeted to the nuclear rim, where it interferes with the integrity of the nuclear lamina, causes misshapen cell nuclei, and leads to multiple aging-like disease phenotypes. We created a gene-targeted allele yielding exclusively progerin (Lmna HG) and found that heterozygous mice (Lmna HG/+) exhibit many phenotypes of progeria. In this study, we tested the hypothesis that the phenotypes elicited by the Lmna HG allele might be modulated by compositional changes in the nuclear lamina. To explore this hypothesis, we bred mice harboring one Lmna HG allele and one Lmna LCO allele (a mutant allele that produces lamin C but no lamin A). We then compared the phenotypes of Lmna HG/LCO mice (which produce progerin and lamin C) with littermate Lmna HG/+ mice (which produce lamin A, lamin C, and progerin). Lmna HG/LCO mice exhibited improved HG/LCO fibroblasts had fewer misshapen nuclei than Lmna HG/+ fibroblasts (p < 0.0001). A likely explanation for these differences was uncovered; the amount of progerin in Lmna HG/LCO fibroblasts and tissues was lower than in Lmna HG/+ fibroblasts and tissues. These studies suggest that compositional changes in the nuclear lamina can influence both the steady-state levels of progerin and the severity of progeria-like disease phenotypes. 相似文献
14.
Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation 总被引:2,自引:0,他引:2
Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid syndrome characterized by multiple aging-like disease phenotypes. We recently reported that a protein farnesyltransferase inhibitor (FTI) improved several disease phenotypes in mice with a HGPS mutation (Lmna(HG/+)). Here, we investigated the impact of an FTI on the survival of Lmna(HG/+) mice. The FTI significantly improved the survival of both male and female Lmna(HG/+) mice. Treatment with the FTI also improved body weight curves and reduced the number of spontaneous rib fractures. This study provides further evidence for a beneficial effect of an FTI in HGPS. 相似文献
15.
Background
Hutchinson-Gilford progeria syndrome (HGPS) is a premature ageing syndrome that affects children leading to premature death, usually from heart infarction or strokes, making this syndrome similar to normative ageing. HGPS is commonly caused by a mutation in the A-type lamin gene, LMNA (G608G). This leads to the expression of an aberrant truncated lamin A protein, progerin. Progerin cannot be processed as wild-type pre-lamin A and remains farnesylated, leading to its aberrant behavior during interphase and mitosis. Farnesyltransferase inhibitors prevent the accumulation of farnesylated progerin, producing a less toxic protein.Results
We have found that in proliferating fibroblasts derived from HGPS patients the nuclear location of interphase chromosomes differs from control proliferating cells and mimics that of control quiescent fibroblasts, with smaller chromosomes toward the nuclear interior and larger chromosomes toward the nuclear periphery. For this study we have treated HGPS fibroblasts with farnesyltransferase inhibitors and analyzed the nuclear location of individual chromosome territories. We have found that after exposure to farnesyltransferase inhibitors mis-localized chromosome territories were restored to a nuclear position akin to chromosomes in proliferating control cells. Furthermore, not only has this treatment afforded chromosomes to be repositioned but has also restored the machinery that controls their rapid movement upon serum removal. This machinery contains nuclear myosin 1β, whose distribution is also restored after farnesyltransferase inhibitor treatment of HGPS cells.Conclusions
This study not only progresses the understanding of genome behavior in HGPS cells but demonstrates that interphase chromosome movement requires processed lamin A. 相似文献16.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder because of a LMNA gene mutation that produces a mutant lamin A protein (progerin). Progerin also has been correlated to physiological aging and related diseases. However, how progerin causes the progeria remains unknown. Here, we report that the large subunit (RFC1) of replication factor C is cleaved in HGPS cells, leading to the production of a truncated RFC1 of ~ 75 kDa, which appears to be defective in loading proliferating cell nuclear antigen (PCNA) and pol δ onto DNA for replication. Interestingly, the cleavage can be inhibited by a serine protease inhibitor, suggesting that RFC1 is cleaved by a serine protease. Because of the crucial role of RFC in DNA replication, our findings provide a mechanistic interpretation for the observed early replicative arrest and premature aging phenotypes of HPGS and may lead to novel strategies in HGPS treatment. Furthermore, this unique truncated form of RFC1 may serve as a potential marker for HGPS. 相似文献
17.
Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases 总被引:6,自引:0,他引:6
Progeroid syndromes have been the focus of intense research in part because they might provide a window into the pathology of normal ageing. Werner syndrome and Hutchinson-Gilford progeria syndrome are two of the best characterized human progeroid diseases. Mutated genes that are associated with these syndromes have been identified, mouse models of disease have been developed, and molecular studies have implicated decreased cell proliferation and altered DNA-damage responses as common causal mechanisms in the pathogenesis of both diseases. 相似文献
18.
Dan Constantinescu Antonei B. Csoka Gerald P. Schatten 《Experimental cell research》2010,316(17):2747-2759
Impaired DSB repair has been implicated as a molecular mechanism contributing to the accelerating aging phenotype in Hutchinson-Gilford progeria syndrome (HGPS), but neither the extent nor the cause of the repair deficiency has been fully elucidated. Here we perform a quantitative analysis of the steady-state number of DSBs and the repair kinetics of ionizing radiation (IR)-induced DSBs in HGPS cells. We report an elevated steady-state number of DSBs and impaired repair of IR-induced DSBs, both of which correlated strongly with abnormal nuclear morphology. We recreated the HGPS cellular phenotype in human coronary artery endothelial cells for the first time by lentiviral transduction of GFP-progerin, which also resulted in impaired repair of IR-induced DSBs, and which correlated with abnormal nuclear morphology. Farnesyl transferase inhibitor (FTI) treatment improved the repair of IR-induced DSBs, but only in HGPS cells whose nuclear morphology was also normalized. Interestingly, FTI treatment did not result in a statistically significant reduction in the higher steady-state number of DSBs. We also report a delay in localization of phospho-NBS1 and MRE11, MRN complex repair factors necessary for homologous recombination (HR) repair, to DSBs in HGPS cells. Our results demonstrate a correlation between nuclear structural abnormalities and the DSB repair defect, suggesting a mechanistic link that may involve delayed repair factor localization to DNA damage. Further, our results show that similar to other HGPS phenotypes, FTI treatment has a beneficial effect on DSB repair. 相似文献
19.
20.
Increased mechanosensitivity and nuclear stiffness in Hutchinson-Gilford progeria cells: effects of farnesyltransferase inhibitors 总被引:1,自引:0,他引:1
Hutchinson-Gilford progeria syndrome (HGPS), reportedly a model for normal aging, is a genetic disorder in children marked by dramatic signs suggestive for premature aging. It is usually caused by de novo mutations in the nuclear envelope protein lamin A. Lamins are essential to maintaining nuclear integrity, and loss of lamin A/C results in increased cellular sensitivity to mechanical strain and defective mechanotransduction signaling. Since increased mechanical sensitivity in vascular cells could contribute to loss of smooth muscle cells and the development of arteriosclerosis--the leading cause of death in HGPS patients--we investigated the effect of mechanical stress on cells from HGPS patients. We found that skin fibroblasts from HGPS patients developed progressively stiffer nuclei with increasing passage number. Importantly, fibroblasts from HGPS patients had decreased viability and increased apoptosis under repetitive mechanical strain, as well as attenuated wound healing, and these defects preceded changes in nuclear stiffness. Treating fibroblasts with farnesyltransferase inhibitors restored nuclear stiffness in HGPS cells and accelerated the wound healing response in HGPS and healthy control cells by increasing the directional persistence of migrating cells. However, farnesyltransferase inhibitors did not improve cellular sensitivity to mechanical strain. These data suggest that increased mechanical sensitivity in HGPS cells is unrelated to changes in nuclear stiffness and that increased biomechanical sensitivity could provide a potential mechanism for the progressive loss of vascular smooth muscle cells under physiological strain in HGPS patients. 相似文献