首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In view of the inverse temporal relationship of central clock activity to physiological or behavioral outputs in diurnal and nocturnal species, understanding the mechanisms and physiological consequences of circadian disorders in humans would benefit from studies in a diurnal animal model, phylogenetically close to humans. Here we report the discovery of the first intrinsic circadian disorder in a family of diurnal non-human primates, the rhesus monkey. The disorder is characterized by a combination of delayed sleep phase, relative to light-dark cycle, mutual desynchrony of intrinsic rhythms of activity, food intake and cognitive performance, enhanced nighttime feeding or, in the extreme case, intrinsic asynchrony. The phenotype is associated with normal length of intrinsic circadian period and requires an intact central clock, as demonstrated by an SCN lesion. Entrainment to different photoperiods or melatonin administration does not eliminate internal desynchrony, though melatonin can temporarily reinstate intrinsic activity rhythms in the animal with intrinsic asynchrony. Entrainment to restricted feeding is highly effective in animals with intrinsic or SCN lesion-induced asynchrony. The large isolated family of rhesus macaques harboring the disorder provides a powerful new tool for translational research of regulatory circuits underlying circadian disorders and their effective treatment.  相似文献   

2.
Melatonin is synthesized and secreted during the dark period of the light/dark cycle. The rhythmic nocturnal melatonin secretion is directly generated by the circadian clock, located within the suprachiasmatic nuclei in mammals and is entrained to a 24-hour period by the light-dark cycle. The periodic secretion of melatonin may be used as a circadian mediator to any system that can 'read' the message. Melatonin seems to act as an arm of the circadian clock, giving a time-related signal to a number of body functions; one of these, the circadian organization of the defense of the organism, is discussed in some detail as an example.  相似文献   

3.
Circadian and seasonal rhythms are a fundamental feature of all living organisms. The functional mechanism involved is built around internal biological clock(s) and the hormone melatonin (Mel) is one of its critical components. Although numerous other sources have been identified (retina, harderian gland, gut), in vertebrates Mel is primarily produced by the pineal gland during the dark period of the light-dark cycle. This rhythmic Mel is generated directly by circadian clock(s). The Mel rhythm is thus an important efferent hormonal signal from the clock. The periodic secretion of Mel might thus be used as a circadian mediator of a system that can 'read' the message.The duration of the nocturnal Mel production is directly proportional to the length of the dark period. It is through these changes in duration that the brain integrates the photoperiodic information. In essence, the Mel rhythm appears to be an endocrine code of the environmental light-dark cycle conveying photic information that is used by organisms for both circadian and seasonal temporal organization. The major question arising from this effect of Mel concerns it precise mechanism of action. From the data reported in the present minireview, it appears that the photoneuroendocrine mechanism is not fundamentally different in vertebrates at least as far as the role of Mel is concerned.  相似文献   

4.
A dual oscillator basis for mammalian circadian rhythms is suggested by the splitting of activity rhythms into two components in constant light and by the photoperiodic control of pineal melatonin secretion and phase-resetting effects of light. Because splitting and photoperiodism depend on incompatible environmental conditions, however, these literatures have remained distinct. The refinement of a procedure for splitting hamster rhythms in a 24-h light-dark:light-dark cycle has enabled the authors to assess the ability of each of two circadian oscillators to initiate melatonin secretion and to respond to light pulses with behavioral phase shifting and induction of Fos-immunoreactivity in the suprachiasmatic nuclei (SCN). Hamsters exposed to a regimen of afternoon novel wheel running (NWR) split their circadian rhythms into two distinct components, dividing their activity between the latter half of the night and the afternoon dark period previously associated with NWR. Plasma melatonin concentrations were elevated during both activity bouts of split hamsters but were not elevated during the afternoon period in unsplit controls. Light pulses delivered during either the nighttime or afternoon activity bout caused that activity component to phase-delay on subsequent days and induced robust expression of Fos-immunoreactivity in the SCN. Light pulses during intervening periods of locomotor inactivity were ineffective. The authors propose that NWR splits the circadian pacemaker into two distinct oscillatory components separated by approximately 180 degrees, with each expressing a short subjective night.  相似文献   

5.
The effects of a single morning and evening carbohydrate-rich meal for 3 consecutive days on circadian phase of core body temperature (CBT), heart rate, and salivary melatonin rhythms were compared under controlled constant routine conditions. In 10 healthy young men entrained to a natural light-dark cycle with regular sleep timing, CBT and heart rate were significantly elevated for approximately 8 h after the last evening carbohydrate-rich meal (EM), and nocturnal melatonin secretion (as measured by salivary melatonin and urinary 6-sulphatoxymelatonin levels) was reduced, compared to the morning carbohydrate-rich meal (MM) condition. Thus, circadian phase could not be measured until the following day due to this acute masking effect. The day after the last meal intervention, MM showed a significant advanced circadian phase position in CBT (+59+/-12 min) and heart rate (+43+/-18 min) compared to EM. However, dim-light melatonin onset was not significantly changed (+15+/-13 min). The results are discussed with respect to central (light-entrainable) and peripheral (food-entrainable) oscillators. Food may be a zeitgeber in humans for the food-entrainable peripheral oscillators, but melatonin data do not support such a conclusion for the light-entrainable oscillator in the suprachiasmatic nucleus.  相似文献   

6.
The chronobiotic neurohormone melatonin, synthetized in the pineal gland during darkness periods governs the circadian and seasonal biological rhythms. Physiologically, melatonin regulates the sleep/activity alternance, together with the circadian cycle of body temperature and cortisol secretion, and influences various immune, endocrine and metabolic functions. Dysfunction of the endogenous melatonin secretion is associated with mood and behavioral disorders including body weight. Patients with severe depression exhibit desynchronized and reduced melatonin secretion, in parallel with marked sleep disturbances whereas exogenous melatonin administration and antidepressive drugs restore melatonin secretion. A dysregulated melatonin secretion is also observed in obese subjects. Implication of melatonin in these disorders stimulated the search for melatonin analogues with enhanced antidepressive and body weight control effects. The melatoninergic agonist S 20098, or agomelatin, disclosed a potent antidepressive and anxiolytic activity in preclinical studies, which was confirmed in clinical trials in patients with major depression. The antagonist S 20928 was shown to limit seasonal weight gain in an hibernating rodent model. Thus, development of melatoninergic agonists and antagonists appear as an innovative approach in the treatment of depression and obesity, two major public health problems.  相似文献   

7.
B D Goldman 《Steroids》1991,56(5):218-225
The major function of the mammalian pineal gland appears to be its central role in photoperiodism. The pineal hormone, melatonin, is synthesized and secreted primarily at night, under the control of a circadian oscillator that is entrained to the light-dark cycle. Both the circadian phase and the duration of the nocturnal peak of melatonin secretion are established primarily by interactions between the endogenous circadian oscillator and the daily photic cycle. The duration of the melatonin peak varies inversely with day length, and this relationship between day length and the duration of each circadian melatonin peak appears to be an integral part of the photoperiodic mechanism. When pinealectomized animals are given daily melatonin infusions of long duration, they exhibit physiologic responses that normally are observed during exposure to short day photoperiods; when administered short-duration melatonin infusions, the animals display long photoperiod-type responses. In addition to the importance of the duration of each melatonin peak, certain other parameters appear to be significant. If a long-duration infusion of melatonin is interrupted by a period of 2 hours or more without melatonin (i.e., to produce two short duration infusions), the responses are those typical for long day-exposed animals. Thus, to elicit short day-type responses, each long-duration melatonin peak must be relatively continuous; responses are not determined simply by the total time of exposure to melatonin in each circadian cycle. Also, long-duration melatonin peaks may not be effective to elicit photoperiod-type responses unless they are present at frequencies of nearly once every 24 hours or more.  相似文献   

8.
The circadian rhythmicity of hormone secretion, body temperature, and sleep/wakefulness results from an endogenous rhythm of neural activity generated by clock genes in the suprachiasmatic nucleus (SCN). One of these genes, Clock, has been considered essential for the generation of cellular rhythmicity centrally and in the periphery; however, melatonin-proficient Clock(Delta19) + MEL mutant mice retain melatonin rhythmicity, suggesting that their central rhythmicity is intact. Here we show that melatonin production in these mutants was rhythmic in constant darkness and could be entrained by brief single daily light pulses. Under normal light-dark conditions, per2 and prokineticin2 (PK2) mRNA expression was rhythmic in the SCN of Clock(Delta19) + MEL mice. Expression of Bmal1 and npas2 was not altered, whereas per1 expression was arrhythmic. In contrast to the SCN, per1 and per2 expression, as well as Bmal1 expression in liver and skeletal muscle, together with plasma corticosterone, was arrhythmic in Clock(Delta19) + MEL mutant mice in normal light-dark conditions. npas2 mRNA was also arrhythmic in liver but rhythmic in muscle. The Clock(Delta19) mutation does not abolish central rhythmicity and light entrainment, suggesting that a functional Clock homolog, possibly npas2, exists in the SCN. Nevertheless, the SCN of Clock(Delta19) + MEL mutant mice cannot maintain liver and muscle rhythmicity through rhythmic outputs, including melatonin secretion, in the absence of functional Clock expression in the tissues. Therefore, liver and muscle, but not SCN, have an absolute requirement for CLOCK, with as yet unknown Clock-independent factors able to generate the latter.  相似文献   

9.
Brainstem monoaminergic projections to the suprachiasmatic nucleus (SCN), and to the intergeniculate leaflet (IGL), appear to modulate both photic and non-photic effects on the circadian system. Recent work in this laboratory has concentrated on the role of noradrenaline in the regulation of circadian period and phase. Previously, this lab has shown that chronic administration of the alpha2 adrenergic agonist, clonidine, to rats maintained in constant light (LL) shortens free-running circadian period and promotes dissociation of rhythmicity, while acute clonidine administration to hamsters produces phase shifts similar to those observed with photic stimuli. These results suggest an interaction between clonidine and photic input on circadian rhythmicity, and so the present study was designed to examine systematically the relationship between chronic clonidine administration and photic input in both rats and hamsters. In DD and low intensity LL, clonidine did not alter free-running circadian wheel-running rhythms of rats, but under moderate to high intensity LL, clonidine significantly reduced the period-lengthening effects of LL. Chronic clonidine administration also altered several aspects of circadian phase in hamsters; phase shifts in response to light pulses of varying intensity at CT 19 were reduced; steady-state entrainment phase under a 24-h light-dark cycle (LD 14:10)was delayed; and synchronization to a 23-h light-dark cycle (LD 13:10) was impaired. Clonidine appeared to have little effect on free-running period of hamsters, but a trend towards dissociation of rhythmicity under LL was observed. These effects may reflect an action of clonidine at the photic input pathways to the circadian system, or directly at the circadian pacemaker, since alpha 2 adrenoceptors have been localized both in the suprachiasmatic nucleus (SCN) and in several of its projection areas. As both clinical and experimental studies suggest that clonidine may have depressogenic properties, chronic administration of clonidine to rodents may provide an animal model of the alterations in circadian rhythmicity seen in human depression.  相似文献   

10.
Brainstem monoaminergic projections to the suprachiasmatic nucleus (SCN), and to the intergeniculate leaflet (IGL), appear to modulate both photic and non-photic effects on the circadian system. Recent work in this laboratory has concentrated on the role of noradrenaline in the regulation of circadian period and phase. Previously, this lab has shown that chronic administration of the alpha2 adrenergic agonist, clonidine, to rats maintained in constant light (LL) shortens free-running circadian period and promotes dissociation of rhythmicity, while acute clonidine administration to hamsters produces phase shifts similar to those observed with photic stimuli. These results suggest an interaction between clonidine and photic input on circadian rhythmicity, and so the present study was designed to examine systematically the relationship between chronic clonidine administration and photic input in both rats and hamsters. In DD and low intensity LL, clonidine did not alter free-running circadian wheel-running rhythms of rats, but under moderate to high intensity LL, clonidine significantly reduced the period-lengthening effects of LL. Chronic clonidine administration also altered several aspects of circadian phase in hamsters; phase shifts in response to light pulses of varying intensity at CT 19 were reduced; steady-state entrainment phase under a 24-h light-dark cycle (LD 14:10)was delayed; and synchronization to a 23-h light-dark cycle (LD 13:10) was impaired. Clonidine appeared to have little effect on free-running period of hamsters, but a trend towards dissociation of rhythmicity under LL was observed. These effects may reflect an action of clonidine at the photic input pathways to the circadian system, or directly at the circadian pacemaker, since alpha 2 adrenoceptors have been localized both in the suprachiasmatic nucleus (SCN) and in several of its projection areas. As both clinical and experimental studies suggest that clonidine may have depressogenic properties, chronic administration of clonidine to rodents may provide an animal model of the alterations in circadian rhythmicity seen in human depression.  相似文献   

11.
Sleep-wake cycle is the predominant example of circadian rhythms. Melatonin is commonly used to treat insomnia and in additional neurodevelopmental disorders in which sleep disturbance is frequent. In mammals, melatonin receptors are present in the membrane and cell nucleus of many tissues and systems where it exhibits various actions, including the regulation of circadian rhythms. The rhythmic pattern of melatonin secretion is imperative since it endows with vital information to the organism concerning time, which permits for alterations of a number of physiological functions consistent with daily and seasonal variations. Melatonin as well has sleep promoting effects demonstrated in changes in brain activation patterns and tiredness generation. The SCN’s (suprachiasmatic nuclei) function and melatonin production capability turns down with age consequently depriving the brain from an important time cue and sleep regulator.  相似文献   

12.
(1) Circadian clocks have been localized to discrete sites within the nervous system of several organisms and in mammals to the suprachiasmatic nucleus (SCN) in the anterior hypothalamus. The SCN controls and regulates the production and discharge of melatonin (hormonal message of darkness) from the pineal gland via a multisynaptic efferent pathway. The nocturnal rise in melatonin production from serotonin results due to an increased activity of serotonin N-acetyl transferase (NAT). (2) The complex interaction between alcohol and biological clock need to be understood as alcoholism results in various clock linked neuronal disorders especially loss of memory and amnesia like state of consciousness, sleep disorders, insomnia, dementia etc. (3) Serotonin, 5-Hydroxy-tryptamine (5-HT) plays an important role in mediating alcohol’s effects on the brain. Understanding the impact of alcohol consumption on circadian system is a pre-requisite to help in treatment of alcohol induced neurological disorders. We, therefore, studied the effect of ethanol drinking and ethanol withdrawal on daily rhythms of serotonin and its metabolite, 5-hydroxy-indole acetic acid (5-HIAA) in SCN and Pineal of adult male Wistar rats maintained under light-dark (LD, 12:12) conditions. (4) Curcumin is well known for its protective properties such as antioxidant, anti-carcinogenic, anti-viral and anti-infectious etc. Hence, we studied the effect of curcumin on ethanol induced changes on 5-HT and 5-HIAA levels and rhythms in SCN and Pineal. (5) Ethanol withdrawal could not restore either rhythmicity or phases or levels of 5-HT and 5-HIAA. Curcumin administration resulted in partial restoration of daily 5-HT/5-HIAA ratio, with phase shifts in SCN and in Pineal. Understanding the impact of alcohol consumption on circadian system and the role of herbal medication on alcohol withdrawal will help in treatment of alcohol induced neurological disorders.  相似文献   

13.
The main objective of the study was to test the hypothesis that the phase of melatonin release with respect to the light-dark cycle mediates the effects of photoperiod on the reproductive response of the ewe. To test the phase hypothesis, we eliminated endogenous melatonin secretion by pinealectomy and then restored physiological levels of serum melatonin with rises of the same duration but at different phases of the light-dark cycle (either at night or in the middle of the day). Serum melatonin patterns were determined by radioimmunoassay in samples taken hourly for 24 h. The reproductive state was monitored by measuring serum luteinizing hormone (LH) in ovariectomized ewes treated with constant-release estradiol implants. Infusion of a long-day pattern of melatonin was equally effective in maintaining reproductive suppression when given during the night or the middle of the day. LH remained low for approximately 150 days and then rose as ewes became refractory to the inhibitory melatonin signal. These results do not support the phase hypothesis. Rather, they are consistent with the hypothesis that the duration of the nocturnal secretion of melatonin codes for day length.  相似文献   

14.
Melatonin and the seasonal control of reproduction.   总被引:8,自引:0,他引:8  
Many mammalian species from temperate latitudes exhibit seasonal variations in breeding activity which are controlled by the annual photoperiodic cycle. Photoperiodic information is conveyed through several neural relays from the retina to the pineal gland where the light signal is translated into a daily cycle of melatonin secretion: high at night, low in the day. The length of the nocturnal secretion of melatonin reflects the duration of the night and it regulates the pulsatile secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus. Changes in GnRH release induce corresponding changes in luteinising hormone secretion which are responsible for the alternating presence or absence of ovulation in the female, and varying sperm production in the male. It is not yet known where and how this pineal indoleamine acts to exert this effect. Although melatonin binding sites are preferentially localised in the pars tuberalis (PT) of the adenohypophysis, the hypothalamus contains the physiological target sites of melatonin for its action on reproduction. Melatonin does not seem to act directly on GnRH neurons; rather it appears to involve a complex neural circuit of interneurons that includes at least dopaminergic, serotoninergic and excitatory aminoacidergic neurons.  相似文献   

15.
The objectives of the investigation were to assess hypersomnia, which progressively appeared in a young patient after a pinealectomy, chemotherapy, and radiotherapy for a typical germinoma, as well as the potential benefit of melatonin administration in the absence of its endogenous secretion. 24 h ambulatory polysomnography and the Multiple Sleep Latency Test (MSLT) were performed; in addition, daily plasma melatonin, cortisol, growth hormone, prolactin, and rectal temperature profiles were determined before and during melatonin treatment (one 2 mg capsule given nightly at 21:00 h for 4 weeks). MSLT showed abnormal sleep latency and two REM sleep onsets. Nighttime total sleep duration was lengthened, mainly as a consequence of an increased REM sleep duration. These parameters were slightly modified by melatonin replacement. Plasma melatonin levels, which were constantly nil in the basal condition, were increased to supraphysiological values with melatonin treatment. The plasma cortisol profile showed nycthemeral variation within the normal range, and the growth hormone profile showed supplementary diurnal peaks. Melatonin treatment did not modify the secretion of either hormone. The plasma prolactin profile did not display a physiological nocturnal increase in the basal condition; however, it did during melatonin treatment, with the rise coinciding with the nocturnal peak of melatonin concentration. A 24 h temperature rhythm of normal amplitude was persistent, though the mean level was decreased and the rhythm was dampened during melatonin treatment. The role of radiotherapy on the studied parameters cannot be excluded; the findings of this case study suggest that the observed hypersomnia is not the result of melatonin deficiency alone. Overall, melatonin treatment was well tolerated, but the benefit on the sleep abnormality, especially on daytime REM sleep, was minor, requiring the re-introduction of modafinil treatment.  相似文献   

16.
The objectives of the investigation were to assess hypersomnia, which progressively appeared in a young patient after a pinealectomy, chemotherapy, and radiotherapy for a typical germinoma, as well as the potential benefit of melatonin administration in the absence of its endogenous secretion. 24 h ambulatory polysomnography and the Multiple Sleep Latency Test (MSLT) were performed; in addition, daily plasma melatonin, cortisol, growth hormone, prolactin, and rectal temperature profiles were determined before and during melatonin treatment (one 2 mg capsule given nightly at 21:00 h for 4 weeks). MSLT showed abnormal sleep latency and two REM sleep onsets. Nighttime total sleep duration was lengthened, mainly as a consequence of an increased REM sleep duration. These parameters were slightly modified by melatonin replacement. Plasma melatonin levels, which were constantly nil in the basal condition, were increased to supraphysiological values with melatonin treatment. The plasma cortisol profile showed nycthemeral variation within the normal range, and the growth hormone profile showed supplementary diurnal peaks. Melatonin treatment did not modify the secretion of either hormone. The plasma prolactin profile did not display a physiological nocturnal increase in the basal condition; however, it did during melatonin treatment, with the rise coinciding with the nocturnal peak of melatonin concentration. A 24 h temperature rhythm of normal amplitude was persistent, though the mean level was decreased and the rhythm was dampened during melatonin treatment. The role of radiotherapy on the studied parameters cannot be excluded; the findings of this case study suggest that the observed hypersomnia is not the result of melatonin deficiency alone. Overall, melatonin treatment was well tolerated, but the benefit on the sleep abnormality, especially on daytime REM sleep, was minor, requiring the re‐introduction of modafinil treatment.  相似文献   

17.
Decreased melatonin concentration in Cushing's syndrome   总被引:2,自引:0,他引:2  
To determine the effect of hypercortisolaemia on the melatonin circadian secretion 12 patients with pituitary or adrenal dependent Cushing's syndrome and 5 healthy controls were studied. The melatonin circadian rhythm of secretion, observed in the control group, was abolished in the patients with hypercortisolaemia. Mean nocturnal melatonin levels and the integrated 24-hour secretion were significantly lower in the patients studied than those of the controls. Thus, in patients with Cushing's syndrome the melatonin levels are decreased and the circadian rhythm of this hormone is abolished.  相似文献   

18.
All organisms present circadian rhythm in most of their physiological functions, and among them there stand out sleep, motor activity, immune function, the secretion of melatonin, and the production and release of numerous neurotransmitters, in particular of serotonin because of its relationship with the aforementioned factors. Aging changes these rhythms, altering sleep quality and contributing to immunosenescence. Treatment with exogenously administered melatonin or tryptophan may restore these impaired functions due to aging. In our animal model (Streptopelia risoria), both the hormone and the amino acid acted on the activity-rest rhythms, modulating the circulating levels of melatonin and serotonin, and increased the cell viability and resistance to induced oxidative stress of blood heterophils, at the same time as enhancing the phagocytic function and neutralizing the superoxide anions deriving from this immune function. Also, in the old individuals, the treatments with melatonin and tryptophan at the concentrations and times of administration considered suitable improved nocturnal rest besides reverting the immunosuppressory and oxidative effects accompanying phagocytosis at these advanced ages.  相似文献   

19.
In elderly insomniacs, melatonin treatment decreased sleep latency and increased sleep efficiency. This is particularly marked in Alzheimer's disease (AD) patients. Melatonin is effective to reduce significantly benzodiazepine use. In addition, melatonin administration synchronizes the sleep-wake cycle in blind people and in individuals suffering from delayed sleep phase syndrome or jet lag. Urinary levels of 6-sulphatoxymelatonin decrease with age and in chronic diseases like AD or coronary heart disease. The effect of melatonin on sleep is probably the consequence of increasing sleep propensity (by inducing a fall in body temperature) and of a synchronizing effect on the circadian clock (chronobiotic effect).  相似文献   

20.
Most mammals show daily rhythms in sleep and wakefulness controlled by the primary circadian pacemaker, the suprachiasmatic nucleus (SCN). Regardless of whether a species is diurnal or nocturnal, neural activity in the SCN and expression of the immediate-early gene product Fos increases during the light phase of the cycle. This study investigated daily patterns of Fos expression in brain areas outside the SCN in the diurnal rodent Arvicanthis niloticus. We specifically focused on regions related to sleep and arousal in animals kept on a 12:12-h light-dark cycle and killed at 1 and 5 h after both lights-on and lights-off. The ventrolateral preoptic area (VLPO), which contained cells immunopositive for galanin, showed a rhythm in Fos expression with a peak at zeitgeber time (ZT) 17 (with lights-on at ZT 0). Fos expression in the paraventricular thalamic nucleus (PVT) increased during the morning (ZT 1) but not the evening activity peak of these animals. No rhythm in Fos expression was found in the centromedial thalamic nucleus (CMT), but Fos expression in the CMT and PVT was positively correlated. A rhythm in Fos expression in the ventral tuberomammillary nucleus (VTM) was 180 degrees out of phase with the rhythm in the VLPO. Furthermore, Fos production in histamine-immunoreactive neurons of the VTM cells increased at the light-dark transitions when A. niloticus show peaks of activity. The difference in the timing of the sleep-wake cycle in diurnal and nocturnal mammals may be due to changes in the daily pattern of activity in brain regions important in sleep and wakefulness such as the VLPO and the VTM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号