首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: In this study, the effects of three related peptides, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, and vasoactive intestinal peptide (VIP), on cyclic AMP (cAMP) accumulation and intracellular Ca2+ concentration ([Ca2+]i) were compared in N1E-115 cells. PACAP38 and PACAP27 stimulated cAMP accumulation up to 60-fold with EC50 values of 0.54 and 0.067 n M , respectively. The effect of VIP on cAMP accumulation was less potent. The binding of 125I-PACAP27 to intact cells was inhibited by PACAP38 and PACAP27 (IC50 values of 0.44 and 0.55 n M , respectively) but not by VIP. In fura-2-loaded cells, both PACAP38 and PACAP27 increased [Ca2+]i with EC50 values around 10 n M . The interactions of these three peptides with ionomycin, a Ca2+ ionophore, and 4β-phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were also determined. Ionomycin increased the cAMP accumulation caused by all three peptides. With low concentrations of PACAP38 or PACAP27, the effect of PMA was inhibitory, whereas at higher concentrations of PACAP (>1 n M ), the effect of PMA was stimulatory. Similar to other agents that elevate cAMP, PACAP38 was an effective stimulator of neurite outgrowth. These results show that (a) PACAP27 and PACAP38 stimulate cAMP accumulation and increase [Ca2+]i through the type I PACAP receptors in N1E-115 cells, (b) ionomycin enhances cAMP accumulation by all three peptides, and (c) activation of protein kinase C has a dose-dependent stimulatory or inhibitory effect on the PACAP38- or PACAP27-stimulated cAMP accumulation.  相似文献   

2.
Functional interactions between ligands and their cognate receptors can be investigated using the ability of melanophores from Xenopus laevis to disperse or aggregate their pigment granules in response to alterations in the intracellular levels of second messengers. We have examined the response of long-term lines of cultured melanophores from X. laevis to pituitary adenylate cyclase activating peptide (PACAP), a neuropeptide with vasodilatory activity, and maxadilan, a vasodilatory peptide present in the salivary gland extracts of the blood feeding sand fly. Pituitary adenylate cyclase activating peptide increased the intracellular levels of cyclic adenosine monophosphate (cAMP) and induced pigment dispersion in the pigment cells, confirming that melanophores express an endogenous PACAP receptor. Maxadilan did not induce a response in non-transfected melanophores. When the melanophores were transfected with complementary DNA (cDNA) from the three different members of the PACAP receptor family, maxadilan induced pigment dispersion specifically and cAMP accumulation in melanophores transfected with the cDNA for PAC1 receptors but not VPAC1 or VPAC2 receptors. A melanophore line was generated that stably expresses the PAC1 receptor.  相似文献   

3.
Functional interactions between ligands and their cognate receptors can be investigated using the ability of melanophores from Xenopus laevis to disperse or aggregate their pigment granules in response to alterations in the intracellular levels of second messengers. We have examined the response of long‐term lines of cultured melanophores from X. laevis to pituitary adenylate cyclase activating peptide (PACAP), a neuropeptide with vasodilatory activity, and maxadilan, a vasodilatory peptide present in the salivary gland extracts of the blood feeding sand fly. Pituitary adenylate cyclase activating peptide increased the intracellular levels of cyclic adenosine monophosphate (cAMP) and induced pigment dispersion in the pigment cells, confirming that melanophores express an endogenous PACAP receptor. Maxadilan did not induce a response in non‐transfected melanophores. When the melanophores were transfected with complementary DNA (cDNA) from the three different members of the PACAP receptor family, maxadilan induced pigment dispersion specifically and cAMP accumulation in melanophores transfected with the cDNA for PAC1 receptors but not VPAC1 or VPAC2 receptors. A melanophore line was generated that stably expresses the PAC1 receptor.  相似文献   

4.
The effects of pituitary adenylate cyclase activating peptide (PACAP) on the blood pressure of the anesthetized rat and on the isolated rat tail artery were investigated and compared to those of vasoactive intestinal peptide (VIP). PACAP-38, PACAP-27 and the C-terminal fragment 16–38 caused a dose-dependent decrease in the systemic blood pressure. PACAP-27 and PACAP-38 were equipotent with VIP. The C-terminal fragment 16–38 was much less potent than VIP. The duration of action was longer for equimolar doses of PACAP-38 and PACAP-27 than for VIP and much longer than for PACAP 16–38. PACAP-27 and the phosphodiesterase inhibitor rolipram given in combination produced additive vasodepressive responses. In vitro PACAP-38, PACAP-27, VIP and PACAP 16–38 relaxed the phenylephrine-precontracted rat tail artery. PACAP-38 and PACAP-27 were equipotent with VIP. PACAP 16–38 was much less potent than the full-length peptides. The responses were resistant to atropine and propranolol. Addition of VIP 1 μM to preparations exposed to 1 μM PACAP-38 or -27 did not produce a further relaxation. VIP-like peptides, PACAP in particular, are known to activate adenylate cyclase and to elevate the plasma cyclic AMP (cAMP) concentration. cAMP was found to be a potent vasodepressor in the anaesthetized rat and a potent vasodilator of precontracted blood vessels. On the basis of these results it cannot be excluded that the vascular effects of PACAP are secondary to the effect of elevated levels of extracellular cAMP.  相似文献   

5.
Pituitary adenylate cyclase-activating polypeptide (PACAP) interacts with three types of PACAP/VIP-receptors. The PAC1-receptor accepts PACAP as a high affinity ligand but not vasoactive intestinal peptide (VIP) similarly binding to VPAC1- and VPAC2-receptors. To identify those amino acids not present in VIP defining PAC1-receptor selectivity of PACAP, radio receptor binding assays on AR4-2J cells were performed. It could be shown that PACAP(1-27) exhibited a distinct and much higher susceptibility to VIP-amino acid substitutions, compared to PACAP(1-38). Positions 4 and 5 seem to be most important for receptor binding of PACAP(1-27), whereas position 13 was identified to be crucial for maximal affinity of PACAP(1-38). PACAP(29-38) extension analogues of VIP revealed a stabilizing effect of the C-terminus of PACAP(1-38) on the optimal peptide conformation. The substitution analogues were also checked for their capacity to stimulate IP3 and cAMP formation in AR4-2J cells. Compared to PACAP(1-27) and PACAP(1-38), most analogues revealed potencies reduced congruously to their lower binding affinities. However, one of the analogues, PACAP(1-27) substituted in position 5, may represent a weak antagonist since this peptide was less potent in inducing second messengers than in label displacement. Our findings indicate that PACAP(1-27) and PACAP(1-38) differ in terms of their requirement of the amino acids in positions 4, 5, 9, 11 and 13 for maximal interaction with the PAC1-receptor.  相似文献   

6.
A number of regulatory peptides were investigated for their ability to elevate plasma cAMP. Pituitary adenylate cyclase activating peptide (PACAP)-27, PACAP-38, helodermin, helospectin I and II, vasoactive intestinal peptide (VIP), glucagon, parathyroid hormone (PTH), calcitonin and calcitonin gene-related peptide were among the peptides that were highly effective in raising plasma cAMP when given intravenously in equimolar doses to conscious mice. PACAP-27 and -38 were more effective than any of the other peptides. PACAP 16–38, secretin, gastrin-17, galanin, somatostatin, cholecystokinin-8s, pancreatic polypeptide, substance P, peptide YY and neuropeptide Y were inactive and also did not interfere with the PACAP-27-evoked rise in plasma cAMP levels. Repeated injections of PACAP-27 every 30 min caused a progressive reduction in the plasma cAMP response (measured 5 min after each injection). Forskolin, an activator of adenylate cyclase, dose-dependently raised the plasma concentration of cAMP and displayed a synergistic effect when given in a low dose concurrently with PTH or PACAP-38. The phosphodiesterase inhibitor rolipram dose-dependently raised the plasma concentration of cAMP. Combined treatment with PACAP-27 and a threshold dose of rolipram resulted in an exaggerated plasma cAMP response. Kidney hilus ligation suppressed the responses to PACAP-38, PTH, helodermin, helospectin, VIP, glucagon and calcitonin. Hepatectomy suppressed the response to glucagon but was without effect on the response to the other peptides. Pancreatectomy and spleenectomy reduced the response to VIP, but was without effect on the response to the other peptides. PACAP-27 stimulated cAMP efflux from the isolated rat tail vein. Hence, it cannot be excluded that blood vessels contribute to the peptide evoked plasma cAMP response in vivo.  相似文献   

7.
The role of PACAP27, PACAP38 and VIP in the regulation of insulin release from pancreatic islets isolated from rats previously subjected to total parenteral nutrition (TPN) for 10 days was studied. Glucose-stimulated insulin secretion from islets of TPN rats was attenuated in parallel with cyclic AMP production. Immunocytochemistry showed an increased number of VIP-immunoreactive nerve fibers in the pancreatic islets of TPN rats. PACAP27, PACAP38 and VIP dose dependently and to the same magnitude potentiated insulin secretion from the islets of freely fed controls in the presence of a substimulatory glucose concentration (8.3 mmol/l). The secretory response of islets from TPN-treated rats to these neuropeptides was, however, markedly exaggerated compared to the controls. The insulin response of islets from TPN-treated rats to PACAP27 and PACAP38 was much greater than to VIP. With respect to insulin secretion, TPN treatment shifted the PACAP27 and PACAP38 dose-response curve to the left by two orders of magnitude. In the presence of 8.3 mmol/l glucose, cAMP accumulation was slightly higher in islets from TPN rats and the PACAP27, PACAP38 and VIP-stimulated increase in the cAMP production was markedly greater compared to the controls. Additional complementary in vivo experiments showed that PACAP27 normalized the defective glucose-stimulated insulin secretory response of TPN-treated rats. The data suggest that the defective nutrient-stimulated insulin secretion seen after long-term TPN treatment could be normalized by agents stimulating cAMP production possibly through cAMP/PK A-pathway.  相似文献   

8.
Vasoactive intestinal peptide (VIP) activates adenylylcyclase in sympathoadrenal cells at concentrations greater than 10(-6) M. We demonstrate here that two forms of a newly discovered peptide with homology to VIP named pituitary adenylate cyclase-activating polypeptide (PACAP) are much more potent activators of signal transduction in PC12 cells. Both the 27- and 38-amino acid forms of PACAP elevate cAMP levels in PC12 cells and stimulate adenylylcyclase in PC12 membranes, with an EC50 near 10(-9) M. PACAP38 additionally is a potent activator of the inositol lipid cascade in PC12 cells, elevating the content of inositol phosphates by 8-fold at 10(-8) M (EC50 = 7 x 10(-9) M). PACAP38 and PACAP27 have been thought to have essentially identical actions, but PACAP27 is 2-3 logs less potent in increasing inositol lipid levels. Moreover, PACAP38 at 10(-8) M is an effective inducer of neuronal morphology in PC12 cells, whereas PACAP27 is much less active in promoting neurite outgrowth. In contrast to the PACAP-preferring receptors on PC12 cells, another class of PACAP-binding sites with equal high affinities for VIP, PACAP38, and PACAP27 has been identified on several other cell types. We find that the cAMP content of rat CH3 pituitary cells, known to have high affinity VIP receptors, is in fact potently elevated by PACAP27 and PACAP38 as well as by VIP. However, PACAP38, even at 10(-6) M, is not capable of significant activation of inositol lipid turnover via these VIP/PACAP nondiscriminating sites.  相似文献   

9.
The superior cervical ganglion (SCG) is a well-characterized model of neural development, in which several regulatory signals have been identified. Vasoactive intestinal peptide (VIP) has been found to regulate diverse ontogenetic processes in sympathetics, though functional requirements for high peptide concentrations suggest that other ligands are involved. We now describe expression and functions of pituitary adenylate cyclase-activating polypeptide (PACAP) during SCG ontogeny, suggesting that the peptide plays critical roles in neurogenesis. PACAP and PACAP receptor (PAC(1)) mRNA's were detected at embryonic days 14.5 (E14.5) through E17.5 in vivo and virtually all precursors exhibited ligand and receptor, indicating that the system is expressed as neuroblasts proliferate. Exposure of cultured precursors to PACAP peptides, containing 27 or 38 residues, increased mitogenic activity 4-fold. Significantly, PACAP was 1000-fold more potent than VIP and a highly potent and selective antagonist entirely blocked effects of micromolar VIP, consistent with both peptides acting via PAC(1) receptors. Moreover, PACAP potently enhanced precursor survival more than 2-fold, suggesting that previously defined VIP effects were mediated via PAC(1) receptors and that PACAP is the more significant developmental signal. In addition to neurogenesis, PACAP promoted neuronal differentiation, increasing neurite outgrowth 4-fold and enhancing expression of neurotrophin receptors trkC and trkA. Since PACAP potently activated cAMP and PI pathways and increased intracellular Ca(2+), the peptide may interact with other developmental signals. PACAP stimulation of precursor mitosis, survival, and trk receptor expression suggests that the signaling system plays a critical autocrine role during sympathetic neurogenesis.  相似文献   

10.
PACAP (pituitary adenylate-cyclase-activating peptide)-binding receptors were investigated in membranes from the rat pancreatic acinar cell line, AR 4-2J, the rat hippocampus and the human neuroblastoma cell line NB-OK, by 125I-PACAP(1-27) (amino acid residues 1-27 of N-terminal amidated PACAP) binding and adenylate cyclase activation. The relative binding of 125I-PACAP(1-27) to the receptor, and ability to activate adenylate cyclase were PACAP greater than or equal to PACAP(1-27) greater than PACAP(2-38) greater than PACAP(1-9)-VIP(10-28)(PACAP-VIP) greater than PACAP(2-27) greater than [Ser9,Tyr13]VIP greater than [Tyr13]VIP greater than or equal to [Ser9]VIP greater than or equal to VIP(1-23)-PACAP(24-27)(VIP-PACAP) greater than VIP (vasoactive intestinal peptide). The N-terminal moiety of PACAP(1-27) was more important than the three amino acids at the C-terminus for 125I-PACAP(1-27)-binding site recognition. For rat pancreatic 125I-VIP-binding sites tested with 125I-VIP, the order of binding affinity was PACAP = PACAP(1-27) greater than or equal to VIP = [Ser9]VIP = [Tyr13]VIP = [Ser9,Try13]VIP greater than or equal to PACAP-VIP greater than or equal to VIP-PACAP greater than PACAP(2-38) = PACAP(2-27). Pancreatic 125I-VIP-binding sites, when compared to 125I-PACAP(1-27)-binding sites, showed little specificity and only weak coupling, so that PACAP and VIP-PACAP acted only as partial VIP agonists on adenylate cyclase.  相似文献   

11.
Pituitary adenylate cyclase activating peptide (PACAP) is a novel neuropeptide with regulatory and trophic functions that is related to vasoactive intestinal peptide (VIP). Here we investigate the expression of specific PACAP receptors (PAC1) and common VIP/PACAP receptors (VPAC1 and VPAC2) in the human hyperplastic prostate by immunological methods. The PAC1 receptor corresponded to a 60-KDa protein whereas the already known VPAC1 and VPAC2 receptors possessed molecular masses of 58 and 68 KDa, respectively. The heterogeneity of VIP/PACAP receptors in this tissue was confirmed by radioligand binding studies using [125I]PACAP-27 by means of stoichiometric and pharmacological experiments. At least two classes of PACAP binding sites showing different affinities could be resolved, with Kd values of 0.81 and 51.4 nM, respectively. The order of potency in displacing [125I]PACAP-27 binding was PACAP-27 approximately equal to PACAP-38 > VIP. PACAP-27 and VIP stimulated similarly adenylate cyclase activity, presumably through common VIP/PACAP receptors. The PAC1 receptor was not coupled to activation of either adenylate cyclase, nitric oxide synthase, or phospholipase C. It appears to be a novel subtype of PAC1 receptor because PACAP-27 (but not PACAP-38 or VIP) led to increased phosphoinositide synthesis, an interesting feature because phosphoinositides are involved via receptor mechanisms in the regulation of cell proliferation.  相似文献   

12.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) interact with VPAC(2) receptors in rabbit and guinea pig (GP) gastric muscle but with functionally distinct VIP and PACAP receptors in GP tenia coli. This study examined whether selectivity for VIP was determined by two residues (40, 41) in the extracellular domain that differ in the VIP receptors of GP gastric and tenial muscle. A mutant rat VPAC(2) receptor (L40F, L41F), and two chimeric receptors in which the NH(2)-terminal domain of rat VPAC(2) receptor was replaced with that of GP gastric (chimeric-G) or tenia coli (chimeric-T) VIP receptors, were constructed and expressed in COS-1 cells. VIP and PACAP bound with equal affinity to wild-type and mutant rat VPAC(2) receptors and to chimeric-G receptor (IC(50): VIP 0.3 +/- 0.1 to 1.5 +/- 0.4 nM, PACAP 0.4 +/- 0.1 to 2.5 +/- 0.1 nM) and stimulated cAMP with equal potency (EC(50): VIP 13 +/- 5 to 48 +/- 8 nM, PACAP 8 +/- 3 to 31 +/- 14 nM). VIP bound with high affinity also to chimeric-T receptor (IC(50): 0.5 +/- 0.1 nM) and stimulated cAMP with high potency (EC(50): 3 +/- 1 nM). In contrast, PACAP exhibited >1,000-fold less affinity for binding or potency for stimulating cAMP. We conclude that GP tenia coli express a VIP-specific receptor and that selectivity is determined by a pair of extracellular phenylalanine residues.  相似文献   

13.
Abstract: Two forms of pituitary adenylate cyclase-activating polypeptide (PACAP), the 38- and 27-amino-acid forms (PACAP38 and PACAP27, respectively), which share amino acid sequence homology with vasoactive intestinal peptide (VIP), were evaluated for their abilities to regulate sympathetic neuron catecholamine and neuropeptide Y (NPY) expression. PACAP38 and PACAP27 potently and efficaciously stimulated NPY and catecholamine secretion in primary cultured superior cervical ganglion (SCG) neurons; 100- to 1,000-fold higher concentrations of VIP were required to modulate secretion, suggesting that SCG neurons express the PACAP-selective type I receptor. PACAP38 elicited a sustained seven- to ninefold increase in the rate of NPY secretion and three-fold stimulation in the rate of catecholamine release. PACAP38 and PACAP27 produced parallel neuronal NPY and catecholamine release, but cellular levels of NPY and catecholamines were differentially regulated. Sympathetic neuron NPY content was decreased, whereas cellular total catecholamine levels were elevated by the PACAP peptides; total NPY and catecholamine levels (secreted plus cellular content) were increased. In concert with the increased total peptide and transmitter production, pro-NPY and tyrosine hydroxylase mRNA levels were elevated. Furthermore, PACAP38 was more efficacious than PACAP27 in regulating pro-NPY and tyrosine hydroxylase mRNA. SCG neuronal expression of mRNA encoding the type I PACAP receptor further supported the studies demonstrating that sympathetic neuronal levels of NPY and catecholamine content and secretion and mRNA are differentially regulated by the PACAP peptides.  相似文献   

14.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) have opposite actions on the gallbladder; PACAP induces contraction, whereas VIP induces relaxation. Here, we have attempted to identify key residues responsible for their interactions with PACAP (PAC1) and VIP (VPAC) receptors in the guinea pig gallbladder. We synthesized PACAP-27/VIP hybrid peptides and compared their actions on isolated guinea pig gallbladder smooth muscle strips using isotonic transducers. [Ala4]- and [Val5]PACAP-27 were more potent than PACAP-27 in stimulating the gallbladder. In contrast, [Ala4, Val5]- and [Ala4, Val5, Asn9]PACAP-27 induced relaxation similarly to VIP. [Asn9]-, [Thr11]-, or [Leu13]PACAP-27 had 20-70% contractile activity of PACAP-27, whereas [Asn24,Ser25,Ile26]PACAP-27 showed no change in the activity. All VIP analogs, including [Gly4,Ile5,Ser9]VIP, induced relaxation. In the presence of a PAC1 receptor antagonist, PACAP(6-38), the contractile response to PACAP-27 was inhibited and relaxation became evident. RT-PCR analysis revealed abundant expressions of PAC1 receptor, "hop" splice variant, and VPAC1 and VPAC2 receptor mRNAs in the guinea pig gallbladder. In conclusion, PACAP-27 induces contraction of the gallbladder via PAC1/hop receptors. Gly4 and Ile5 are the key NH2-terminal residues of PACAP-27 that distinguish PAC1/hop receptors from VPAC1/VPAC2 receptors. However, both the NH2-terminal and alpha-helical regions of PACAP-27 are required for initiating gallbladder contraction.  相似文献   

15.
Abstract: Cytochemical analysis demonstrated that a high percentage of human Y-79 retinoblastoma cells displayed a specific labeling by the biotinyl derivative of pituitary adenylate cyclase-activating polypeptide (PACAP), a novel neuropeptide of the secretin-vasoactive intestinal peptide (VIP) family of peptides. In cell membranes, the two molecular forms of PACAP, the one with 38 (PACAP 38) and the other with 27 (PACAP 27) amino acids, displaced the binding of 125I-PACAP 27 with IC50 values in the picomolar range and increased adenylyl cyclase activity by 100-fold with EC50 values of 27 and 180 p M , respectively. VIP, human peptide histidine-isoleucine, glucagon, and secretin were much less effective and potent in both receptor assays. The PACAP receptor antagonists PACAP 6–27 and PACAP 6–38 and an antiserum directed against the stimulatory G protein Gs inhibited the PACAP stimulation of adenylyl cyclase. In intact cells, both PACAPs and VIP failed to stimulate the phosphoinositide hydrolysis, whereas in cell membranes PACAP 38, but not the other peptides, produced a modest increase (40%) of inositol phosphate formation with an EC50 value of 22 n M . However, this effect was not antagonized by either PACAP 6–38 or PACAP 6–27. These data demonstrate the presence in human Y-79 retinoblastoma cells of specific PACAP receptors and provide further evidence that PACAP may act as a neurotransmitter/neuromodulator in mammalian retina.  相似文献   

16.
Pituitary adenylate cyclase-activating peptide (PACAP) has a specific receptor PAC1 and shares two receptors VPAC1 and VPAC2 with vasoactive intestinal peptide (VIP). VPAC2 activation enhances glucose-induced insulin release while VPAC1 activation elevates glucose output. To generate a large pool of VPAC2 selective agonists for the treatment of type 2 diabetes, structure-activity relationship studies were performed on PACAP, VIP, and a VPAC2 selective VIP analog. Chemical modifications on this analog that prevent recombinant expression were sequentially removed to show that a recombinant peptide would retain VPAC2 selectivity. An efficient recombinant expression system was then developed to produce and screen hundreds of mutant peptides. The 11 mutations found on the VIP analog were systematically replaced with VIP or PACAP sequences. Three of these mutations, V19A, L27K, and N28K, were sufficient to provide most of the VPAC2 selectivity. C-terminal extension with the KRY sequence from PACAP38 led to potent VPAC2 agonists with improved selectivity (100-1000-fold). Saturation mutagenesis at positions 19, 27, 29, and 30 of VIP and charge-scanning mutagenesis of PACAP27 generated additional VPAC2 selective agonists. We have generated the first set of recombinant VPAC2 selective agonists described, which exhibit activity profiles that suggest therapeutic utility in the treatment of diabetes.  相似文献   

17.
R. LEMA-KISOKA, N. HAYEZ, I. LANGER, P. ROBBERECHT, E. SARIBAN AND C. DELPORTE. Characterization of functional VIP/PACAP receptors in the human erythroleukemic HEL cell line. PEPTIDES. The presence of VIP/PACAP receptors was investigated on the human erythroleukemic cell line HEL. Specific binding of [125I]-PACAP or [125I]-VIP on HEL cells or membranes was very low and did not allow to perform competition curves. At 37°C PACAP transiently increased cAMP levels in the presence of the non-specific phosphodiesterase inhibitor IBMX, suggesting rapid desensitization. Kinetic studies revealed that optimal conditions to measure the EC50 of PACAP(1–27) were 10 min at 20°C. Under those conditions, PACAP-related peptides increased cAMP levels with EC50 in agreement with the pharmacological profile of the VPAC1 receptor subtype: PACAP = VIP > [K15, R16, L27]VIP(1–7)/GRF(8–27) = [R16]ChSn (two VPAC1 agonists) HELODERMIN = secretin. RO 25–1553, a selective activator of VPAC2 receptor was inactive at 1 μM. Dose-response curves of VPAC1 agonist molecules (PACAP, VIP, [K15, R16, L27]VIP(1–7)/GRF(8–27), [R16]ChSn) were shifted to the right by the VPAC1 receptor antagonist [AcHis1, D-Phe2, Lys15, Leu17]VIP(3–7)/GRF(8–27), with a Ki of 3 ± 1 nM (n = 3). The presence of VPAC1 receptor mRNA was confirmed by RT-PCR. Preincubation with PACAP or PMA showed that VPAC1 receptors underwent homologous and heterologous desensitization.

This study provides the first evidence for the expression of functional VPAC1 receptors undergoing rapid desensitization in HEL cells.  相似文献   


18.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been suggested as participants in enteric inhibitory neural regulation of gastrointestinal motility. These peptides cause a variety of postjunctional responses including membrane hyperpolarization and inhibition of contraction. Neuropeptides released from enteric motor neurons can elicit responses by direct stimulation of smooth muscle cells as opposed to other transmitters that rely on synapses between motor nerve terminals and interstitial cells of Cajal. Therefore, we studied the responses of murine colonic smooth muscle cells to VIP and PACAP(1–38) with confocal microscopy and patch-clamp technique. Localized Ca2+ transients (Ca2+ puffs) were observed in colonic myocytes, and these events coupled to spontaneous transient outward currents (STOCs). VIP and PACAP increased Ca2+ transients and STOC frequency and amplitude. Application of dibutyryl cAMP had similar effects. The adenylyl cyclase blocker MDL-12,330A alone did not affect spontaneous Ca2+ puffs and STOCs but prevented responses to VIP. Disruption of A-kinase-anchoring protein (AKAP) associations by application of AKAP St-Ht31 inhibitory peptide had effects similar to those of MDL-12,330A. Inhibition of ryanodine receptor channels did not block spontaneous Ca2+ puffs and STOCs but prevented the effects of dibutyryl cAMP. These findings suggest that regulation of Ca2+ transients (which couple to activation of STOCs) may contribute to the inhibitory effects of VIP and PACAP. Regulation of Ca2+ transients by VIP and PACAP occurs via adenylyl cyclase, increased synthesis of cAMP, and PKA-dependent regulation of ryanodine receptor channels. calcium puffs; ryanodine receptor channels; enteric nervous system; gastrointestinal motility  相似文献   

19.
The goal of these experiments was to identify and characterize binding sites in the rat hypothalamus for the peptide, pituitary adenylate cyclase activating polypeptide (PACAP). The 27 amino acid form of PACAP (PACAP27) was used as the radiolabeled ligand in these experiments. Binding of [125I]PACAP27 to hypothalamic membrane preparations was rapid, reversible on addition of unlabeled peptide, and at least partially regulated by GTP. Nonhydrolyzable GTP analogs, guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S), guanosine-5'-(2-thiodiphosphate) (GDP beta S), and guanylylimidophosphate (GppNHp) also displaced [125I]PACAP27 binding to hypothalamic membrane preparations in a dose-dependent manner. The order of potency for the three analogs was GTP gamma S greater than GDP beta S greater than GppNHp. Both forms of the peptide, PACAP27 and PACAP38, were highly potent in displacing bound [125I]PACAP27, whereas VIP or PACAP(1-23) were unable to displace binding at concentrations of up to 500 nM. Scatchard analysis of the PACAP27 and PACAP38 displacement curves revealed that the fit of both curves was consistent with a single class of high-affinity binding sites, although the site exhibited a greater affinity for PACAP38 compared with PACAP27 (PACAP27 Kd = 1452 +/- 59 pM; PACAP38 Kd = 175 +/- 13 pM; Bmax 23.2 +/- 1.1 pmol/mg protein). The possibility of the existence of a class of binding sites with extremely low affinity cannot be discounted. After covalent cross-linking of [125I]PACAP27 with its receptor, the molecular weights of the complexes were estimated by electrophoresis and autoradiography. A major band of 60 Kd was evident when membranes were incubated with VIP or PACAP(1-23). Previous incubation with unlabeled PACAP27 or PACAP38 eliminated visualization of this band. These results suggest that a specific, high-affinity binding site for PACAP27 is present in rat hypothalamus, and that this site shows a greater affinity for PACAP38 compared with PACAP27. The molecular weight of the peptide-receptor complex is 60,000 kDa, and therefore the receptor itself has an apparent molecular weight 57,000.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号