首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insecticidal protoxin from Bacillus thuringiensis has been shown to be a major component of the spore coat. We have developed a novel surface display system using B. thuringiensis spores in which the N-terminal portion of the protoxin is replaced with a heterologous protein. The expression vector with a sporulation-specific promoter was successfully used to display green fluorescent protein and a single-chain antibody (scFv) gene that encodes anti-4-ethoxymethylene-2-phenyl-2-oxazolin-5-one (anti-phOx) antibody. The spores that carry the anti-phOx antibody can bind to phOx specifically.  相似文献   

2.
The spores of crystal-forming (Cry+) and non-crystal-forming (Cry-) strains of Bacillus thuringiensis var. kurstaki and Bacillus cereus were tested for the ability to be activated by 0.1 m K2CO3 (pH 10). Only the spores of crystal-forming strains could be activated, and this phenotype was independent of whether crystals were present with the spores in the activation solution. The spores of a B. thuringiensis var. kurstaki strain that is temperature sensitive for protoxin accumulation could be activated by the alkaline solution when produced at the permissive temperature, whereas spores produced at the nonpermissive temperature were not activated. The results indicate that protoxin in the spore coat is responsible for the alkaline-activation phenotype and may serve an ecological function for the organism.  相似文献   

3.
Zongze Shao  Ziduo Liu    Ziniu Yu 《Applied microbiology》2001,67(12):5362-5369
Bacillus thuringiensis produces large amounts of various pesticidal proteins during the stationary phase. In order to achieve a high yield and form crystals, some pesticidal proteins require the presence of other proteins. Helper protein P20 is required for efficient production of both the Cyt1A and Cry11A crystal proteins in B. thuringiensis subsp. israelensis. Although full-length Cry1 protoxins are usually independent in terms of expression and crystallization in B. thuringiensis, in this study P20 significantly enhanced production of Cry1Ac protoxin (133 kDa) in an acrystalliferous and plasmid-negative strain. In the presence of P20, the yield of Cry1Ac protoxin increased 2.5-fold, and on average the resulting crystals were 1.85 μm long and 0.85 μm wide, three times the size of the crystals formed in the control lacking P20. Correspondingly, the recombinant strain that coexpressed P20 and Cry1Ac exhibited higher toxicity against Heliothis armigera larvae than the control. Furthermore, serious degradation of Cry1Ac in vivo was observed, which has seldom been reported previously. Actually, most protein was completely degraded during synthesis, and after synthesis about one-third of the expressed protoxins were degraded further before crystallization. In this process, P20 protected only nascent Cry1Ac from degradation, indicating that it acted as a molecular chaperon. In addition, spores were smaller and rounder and had a thinner exosporium layer when they were produced in the presence of P20. In summary, Cry1Ac was severely degraded during synthesis; this degradation was effectively relieved by P20, which resulted in enhanced production. Our results indicated that P20 is an effective tool for optimizing protein production in vivo.  相似文献   

4.
We studied the effects of combinations of Bacillus thuringiensis spores and toxins on the mortality of diamondback moth (Plutella xylostella) larvae in leaf residue bioassays. Spores of B. thuringiensis subsp. kurstaki increased the toxicity of crystals of B. thuringiensis subsp. kurstaki to both resistant and susceptible larvae. For B. thuringiensis subsp. kurstaki, resistance ratios were 1,200 for a spore-crystal mixture and 56,000 for crystals without spores. Treatment of a spore-crystal formulation of B. thuringiensis subsp. kurstaki with the antibiotic streptomycin to inhibit spore germination reduced toxicity to resistant larvae but not to susceptible larvae. In contrast, analogous experiments with B. thuringiensis subsp. aizawai revealed no significant effects of adding spores to crystals or of treating a spore-crystal formulation with streptomycin. Synergism occurred between Cry2A and B. thuringiensis subsp. kurstaki spores against susceptible larvae and between Cry1C and B. thuringiensis subsp. aizawai spores against resistant and susceptible larvae. The results show that B. thuringiensis toxins combined with spores can be toxic even though the toxins and spores have little or no independent toxicity. Results reported here and previously suggest that, for diamondback moth larvae, the extent of synergism between spores and toxins of B. thuringiensis depends on the strain of insect, the type of spore, the set of toxins, the presence of other materials such as formulation ingredients, and the concentrations of spores and toxins.  相似文献   

5.
Ten-gram samples of a clay loam soil were inoculated with Bacillus thuringiensis var. galleriae (H-serotype V) and held at 25°C. Periodically the spores and δ endotoxin protein crystals of B. thuringiensis were extracted from soil samples. Numbers of viable spores were estimated by plate counts and pathogenicity determined by bioassay with larvae of Galleria mellonella. During 135 days, the number of viable spores fell slowly to 24% of the initial numbers, while pathogenicity fell rapidly to <1%, which suggests that the crystals were degraded far more rapidly than spores. Natural soil bacteria increased in numbers during the same period.  相似文献   

6.
Transgenic corn expressing Cry1Ab (a Bacillus thuringiensis toxin) is highly effective in the control of Ostrinia nubilalis. For its toxic action, Cry1Ab has to bind to specific insect midgut proteins. To date, in three Lepidoptera species resistance to a Cry1A toxin has been conferred by mutations in cadherin, a protein of the Lepidoptera midgut membrane. The implication of cadherin in the resistance of an Ostrinia nubilalis colony (Europe-R) selected with Bacillus thuringiensis Cry1Ab protoxin was investigated. Several major mutations in the cadherin (cdh) gene were found, which introduced premature termination codons and/or large deletions (ranging from 1383 to 1701 bp). The contribution of these major mutations to the resistance was analyzed in resistant individuals that survived exposure to a high concentration of Cry1Ab protoxin. The results indicated that the presence of major mutations was drastically reduced in individuals that survived exposure. Previous inheritance experiments with the Europe-R strain indicated the involvement of more than one genetic locus and reduced amounts of the cadherin receptor. The results of the present work support a polygenic inheritance of resistance in the Europe-R strain, in which mutations in the cdh gene would contribute to resistance by means of an additive effect.  相似文献   

7.
Bacillus thuringiensis Cry1AbMod toxins are engineered versions of Cry1Ab that lack the amino-terminal end, including domain I helix α-1 and part of helix α-2. This deletion improves oligomerization of these toxins in solution in the absence of cadherin receptor and counters resistance to Cry1A toxins in different lepidopteran insects, suggesting that oligomerization plays a major role in their toxicity. However, Cry1AbMod toxins are toxic to Escherichia coli cells, since the cry1A promoter that drives its expression in B. thuringiensis has readthrough expression activity in E. coli, making difficult the construction of these CryMod toxins. In this work, we show that Cry1AbMod and Cry1AcMod toxins can be cloned efficiently under regulation of the cry3A promoter region to drive its expression in B. thuringiensis without expression in E. coli cells. However, p3A-Cry1Ab(c)Mod construction promotes the formation of Cry1AMod crystals in B. thuringiensis cells that were not soluble at pH 10.5 and showed no toxicity to Plutella xylostella larvae. Cysteine residues in the protoxin carboxyl-terminal end of Cry1A toxins have been shown to be involved in disulfide bond formation, which is important for crystallization. Six individual cysteine substitutions for serine residues were constructed in the carboxyl-terminal protoxin end of the p3A-Cry1AbMod construct and one in the carboxyl-terminal protoxin end of p3A-Cry1AcMod. Interestingly, p3A-Cry1AbMod C654S and C729S and p3A-Cry1AcMod C730S recover crystal solubility at pH 10.5 and toxicity to P. xylostella. These results show that combining the cry3A promoter expression system with single cysteine mutations is a useful system for efficient expression of Cry1AMod toxins in B. thuringiensis.  相似文献   

8.
Three oligosporogenic mutants of Bacillus thuringiensis were assayed for toxicity against larvae of the Indian meal moth, Plodia interpunctella, and the almond moth, Ephestia cautella. The results were compared with insecticidal activity obtained from the parent strain (HD-1) and two standard B. thuringiensis formulations (HD-1-S-1971 and HD-1-S-1980) against the same insect species. The toxicity of the sporeless mutant preparations was significantly diminished against the Indian meal moth (10- to 26-fold increase in LC50) but exceeded the toxicity of the standards against the almond moth. The toxicities of the B. thuringiensis preparations toward the Indian meal moth were consistent with the number of spores in the test samples, but spores did not contribute to toxicity to E. cautella larvae. A rationale for basing dosage on soluble protein was demonstrated for use in situations where spores are not a contributing factor in toxicity.  相似文献   

9.
Enzymatic digestion in vitro of the Bacillus thuringiensis protoxin presumably releases and activates the toxin in a manner analogous to that which occurs when a B. thuringiensis sporulated fermentation preparation passes through the midgut of a lepidopteran larva. Therefore, a sporulated culture of B. thuringiensis subsp. kurstaki (serotype 3a3b) HD-263 was treated with trypsin to release an activated toxin soluble in bicarbonate buffer. A 63-kilodalton protein, toxic to cabbage looper larvae (Trichoplusia ni) and to lepidopteran cells in culture, was purified to homogeneity from this trypsin digest. The larvicide, a glycoprotein containing 5% carbohydrate (wt/wt), was purified from the soluble B. thuringiensis trypsin digest by using ammonium sulfate precipitation, anion-exchange chromatography, and hydrophobic-interaction chromatography. Its amino acid composition was high in nonpolar residues and unusually low in lysine and histidine. The isoelectric point was 6.5, and the amino acid on the N terminus was identified as isoleucine. The toxin was only slightly soluble in aqueous buffers unless the chaotropic agent potassium thiocyanate was added. Partial characterization of the toxin indicated that it corresponds well with reported sequences deduced from cloned genes.  相似文献   

10.
Assessment of protoxin composition in Bacillus thuringiensis parasporal crystals is principally hampered by the fact that protoxins in a single strain usually possess high sequence homology. Therefore, new strategies towards the identification of protoxins have been developed. Here, we established a powerful method through embedding solubilized protoxins in a polyacrylamide gel block coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of in-gel-generated peptides for protoxin identification. Our model study revealed that four protoxins (Cry1Aa, Cry1Ab, Cry1Ac and Cry2Aa) and six protoxins (Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, Cyt1Aa, and Cyt2Ba) could be rapidly identified from B. thuringiensis subsp. kurstaki HD1 and subsp. israelensis 4Q2-72, respectively. The experimental results indicated that our method is a straightforward tool for analyzing protoxin expression profile in B. thuringiensis strains. Given its technical simplicity and sensitivity, our method might facilitate the present screening program for B. thuringiensis strains with new insecticidal properties. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Zujiao Fu and Yunjun Sun contributed equally to this work.  相似文献   

11.
Dipteran-specific insecticidal protein Cry4A is produced as a protoxin of 130 kDa in Bacillus thuringiensis subsp. israelensis. Here we performed the in vitro processing of Cry4A and showed that the 130-kDa protoxin of Cry4A was processed into the two protease-resistant fragments of 20 and 45 kDa through the intramolecular cleavage of a 60-kDa intermediate. The processing into these two fragments was also observed in vivo. To investigate functional properties of the two fragments, GST (glutathione S-transferase) fusion proteins of the 60-kDa intermediate and the 20- and 45-kDa fragments were constructed. Neither the GST–20-kDa fusion protein (GST-20) nor the GST–45-kDa fusion protein (GST-45) was actively toxic against mosquito larvae of Culex pipiens, whereas the GST–60-kDa intermediate fusion protein (GST-60) exhibited significant toxicity. However, when the two fusion proteins GST-20 and GST-45 coexisted, significant toxicity was observed. The coprecipitation experiment demonstrated that the two fragments associated with each other. Therefore, it is strongly suggested that the two fragments formed an active complex of apparently 60 kDa. A mutant of the 60-kDa protein which was apparently resistant to the intramolecular cleavage with the midgut extract of C. pipiens larvae had toxicity slightly lower than that of GST-60.  相似文献   

12.
At least three different insecticidal crystal protein genes were shown to be expressed in Bacillus thuringiensis subsp. aizawai 7.29, a strain that is potentially active against the cotton leafworm Spodoptera littoralis Bdv. Among crude K-60 fractions (60- to 70-kilodalton [kDa] molecules) that were products of proteolysed crystals containing the active domains of the protoxin molecules, we were able to distinguish several distinct components on the basis of their antigenic relationship and their larvicidal properties. A purified fraction designated SF2 was a 61-kDa component specifically active against Pieris brassicae L. and homologous to the B. thuringiensis subsp. berliner 1715 plasmid-encoded crystal protein. A second fraction designated SF1 was composed of 63- and 65-kDa polypeptides and was specifically active against S. littoralis. The SF1 fraction and particularly the 65-kDa component were not antigenically related to the 61-kDa component. The purified fractions were compared with the products of three different crystal protein genes we previously cloned from total DNA of B. thuringiensis subsp. aizawai, among them a new type of crystal protein gene encoding a protein that is specifically active against S. littoralis and other insects of the Noctuidae family. This approach led us to consider the 65-kDa component as a minimum active part of a δ-endotoxin that is encoded by this new gene. Products of the two other cloned genes can be correlated with the 61- and 63-kDa components, respectively. Thus, in B. thuringiensis subsp. aizawai 7.29, multiple δ-endotoxin genes of different structural types direct the synthesis of several δ-endotoxins with different host specificities which were identified as components of the insecticidal crystals.  相似文献   

13.
A Cry46Ab toxin derived from Bacillus thuringiensis strain TK-E6 shows mosquitocidal activity against Culex pipiens pallens Coquillett (Diptera: Culicidae) larvae as well as preferential cytotoxicity against human cancer cells. In B. thuringiensis cells, Cry46Ab is produced and accumulates as a protein crystal that is processed into the active 29-kDa toxin upon solubilization in the alkaline environment of the insect midgut. The Cry46Ab protoxin is 30 kDa, and is therefore thought to require an accessory protein such as P20 and/or ORF2 for efficient crystal formation. In the present study, the potency of the 4AaCter-tag was investigated for the production of alkali-soluble inclusion bodies of recombinant Cry46Ab in Escherichia coli. The 4AaCter-tag is a polypeptide derived from the C-terminal region of the B. thuringiensis Cry4Aa toxin and facilitates the formation of alkali-soluble protein inclusion bodies in E. coli. Fusion with the 4AaCter-tag enhanced both Cry46Ab production and the formation of Cry46Ab inclusion bodies. In addition, upon optimization of protein expression procedures, the Cry46Ab–4AaCter inclusion bodies showed mosquitocidal activity and stability in aqueous environments comparable to Cry46Ab without the 4AaCter-tag. Our study suggests that use of the 4AaCter-tag is a straightforward approach for preparing formulations of smaller-sized Cry toxins such as Cry46Ab in E. coli.  相似文献   

14.
Degradation products of the parasporal crystals of Bacillus thuringiensis var. kurstaki obtained by treatment with alkali, gut juice from larvae of Bombyx mori, and various plant and mammalian enzymes were compared for elution pattern, approximate molecular weight (MW), and toxicity. The results indicated that with alkaline treatment the most toxic extract was obtained with 0.05–0.1 M NaOH. Toxicity was found associated mainly with a protein peak of 230,000 MW although other toxic peaks were found in the tailing. Heat-treated midgut juice from larval B. mori gave similar results. After digestion of parasporal crystals with clarified midgut juice, five peaks causing toxicity and having MW of approximately 235,000, 67,000, 30,200, 5000, and 1000, respectively, were identified. Treatment of B. thuringiensis δ-endotoxin with α-chymotrypsin gave peaks causing mortality of approximate MW 235,000, 34,000, 5000, and 1000. Trypsin, pronase, carboxypeptidase, and enterokinase digests of the B. thuringiensis δ-endotoxin gave toxic components ranging from 235,000 to 30,000 MW. The protein protoxin molecules are digested to give small toxic subunits that may be of practical value for structural determinations and for molecular mode of action studies.  相似文献   

15.
In this study, the effect of different preparations made from Bacillus thuringiensis var. thuringiensis (strains: CCEB 555 and CCEB 058) on ants, Monomorium pharaonis, under laboratory conditions is reported. The different preparations tested consisted of (1) a liquid culture of the strain B. thuringiensis CCEB 555 (containing spores and exotoxin), (2) the supernatant of the culture broth of strain CCEB 555 (containing exotoxin), and (3) the biological preparation “Bathurin” prepared from the strain B. thuringiensis CCEB 058 (containing spores and inclusions, without exotoxin). The preparations were used either pure or in alternation with borax, i.e., 1 wk borax, 3 wk the respective preparation for several months. All preparations were found to be toxic to M. pharaonis and their effect was characterized by a slow extinction of the ant colony. Administration of “Bathurin” (1.3%) yielded a 100% mortality after 20 wk. Using a liquid culture of B. thuringiensis var. thuringiensis, 100% mortality was recorded after 21 wk, a period of time which did not differ from that obtained with the supernatant of the culture containing exotoxin. The alternation with borax was found to accelerate ant mortality by 9–10 wk after administration. In all experiments, the worker ants died first, the queen ants surviving them by 1–3 wk.In experiments employing worker ants only, a 100 and 98% mortality, respectively, occurred within 3 wk after administration of a liquid culture of B. thuringiensis and “Bathurin” supplemented with borax.  相似文献   

16.
Survival of Bacillus thuringiensis Spores in Soil   总被引:6,自引:3,他引:3       下载免费PDF全文
Bacillus thuringiensis spores and parasporal crystals were incubated in natural soil, both in the laboratory and in nature. During the first 2 weeks, the spore count decreased by approximately 1 log. Thereafter, the number of spore CFU remained constant for at least 8 months. B. thuringiensis did not lose its ability to make the parasporal crystals during its residence in soil. Spore survival was similar for a commercial spore-crystal preparation (the insecticide) and for laboratory-grown spores. In contrast to these results, spores that were produced in situ in soil through multiplication of added vegetative cells survived for only a short time. For spore additions to soil, variations in soil pH had little effect on survival for those spores that survived the first 2 weeks of incubation. Also without effect were various pretreatments of the spores before incubation in soil or nutritional amendment or desiccation of the soil. Remoistening of a desiccated soil, however, caused a decrease in spore numbers. Spores incubated in soil in the field did not show this, but the degree of soil desiccation in nature probably never reached that for the laboratory samples. The good survival of B. thuringiensis spores after the first 2 weeks in soil seemed to be a result of their inability to germinate in soil. We found no evidence for the hypothesis that rapid germination ability for spores in soil conferred a survival advantage.  相似文献   

17.
Activated forms of Bacillus thuringiensis insecticidal toxins have consistently been found to form insoluble and inactive precipitates when they are expressed in Escherichia coli. Genetic engineering of these proteins to improve their effectiveness as biological pesticides would be greatly facilitated by the ability to express them in E. coli, since the molecular biology tools available for Bacillus are limited. To this end, we show that activated B. thuringiensis toxin (Cry1Ac) can be expressed in E. coli as a translational fusion with the minor phage coat protein of filamentous phage. Phage particles displaying this fusion protein were viable, infectious, and as lethal as pure toxin on a molar basis when the phage particles were fed to insects susceptible to native Cry1Ac. Enzyme-linked immunosorbent assay and Western blot analysis showed the fusion protein to be antigenically equivalent to native toxin, and micropanning with anti-Cry1Ac antibody was positive for the toxin-expressing phage. Phage display of B. thuringiensis toxins has many advantages over previous expression systems for these proteins and should make it possible to construct large libraries of toxin variants for screening or biopanning.  相似文献   

18.
For almost half a century, the structure of the full‐length Bacillus thuringiensis (Bt) insecticidal protein Cry1Ac has eluded researchers, since Bt‐derived crystals were first characterized in 1965. Having finally solved this structure we report intriguing details of the lattice‐based interactions between the toxic core of the protein and the protoxin domains. The structure provides concrete evidence for the function of the protoxin as an enhancer of native crystal packing and stability.  相似文献   

19.
20.
A variant of Bacillus thuringiensis subsp. kurstaki containing a single, stable copy of a uniquely amplifiable DNA oligomer integrated into the genome for tracking the fate of biological agents in the environment was developed. The use of genetically tagged spores overcomes the ambiguity of discerning the test material from pre-existing environmental microflora or from previously released background material. In this study, we demonstrate the utility of the genetically “barcoded” simulant in a controlled indoor setting and in an outdoor release. In an ambient breeze tunnel test, spores deposited on tiles were reaerosolized and detected by real-time PCR at distances of 30 m from the point of deposition. Real-time PCR signals were inversely correlated with distance from the seeded tiles. An outdoor release of powdered spore simulant at Aberdeen Proving Ground, Edgewood, MD, was monitored from a distance by a light detection and ranging (LIDAR) laser. Over a 2-week period, an array of air sampling units collected samples were analyzed for the presence of viable spores and using barcode-specific real-time PCR assays. Barcoded B. thuringiensis subsp. kurstaki spores were unambiguously identified on the day of the release, and viable material was recovered in a pattern consistent with the cloud track predicted by prevailing winds and by data tracks provided by the LIDAR system. Finally, the real-time PCR assays successfully differentiated barcoded B. thuringiensis subsp. kurstaki spores from wild-type spores under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号