首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Raman scattering and infrared spectroscopic techniques were used to study the vibrational spectrum and conformation of the membrane channel protein gramicidin A in the solid state, in organic solutions and, using Raman scattering only, in a phospholipid environment. The investigation also includes measurements on head- and tail-group-modifled gramicidin A and a potassium thiocyanate-gramicidin A complex. Tentative identification of the molecular vibrations is proposed on the basis of the data on model compounds. The existence of four distinct conformations of the gramicidin A chain is established: conformation I present in the solid state, and CH3OH and CD3OD solutions; conformation II present in films cast from CHCl3 solution; conformation III present in (CH3)2SO and (CD3)2SO solutions at concentrations below 0.5 m gramicidin A; and conformation IV present in the potassium thiocyanate-gramicidin A complex. The data obtainable on a gramicidin A-phospholipid suspension indicate a gramicidin A conformation in this environment corresponding either to the conformation I or II. The details of the spectra in the amide I region are shown to be consistent with a β-parallel hydrogen-bonded πLD helix for conformational I, in terms of the polypeptide vibrational calculations of Nevskaya and co-workers. Conformation II is found to be consistent with an antiparallel double-stranded πLD helix, while conformations III and IV probably have π-helical structures with larger channel diameters. The data on head- and tail-modified gramicidin A molecules indicate that their conformations are only slightly different from that of gramicidin A in conformation I.  相似文献   

2.
Reduction of aryl-nitroso compounds by pyridine and flavin coenzymes   总被引:3,自引:0,他引:3  
1. A systematic kinetic investigation of the reduction of aryl-nitroso compounds by pyridine and flavin coenzymes and their analogs, in enzymatic and nonenzymatic systems, has been reported. 2. Two main groups of nitroso compounds have been investigated, representatives nitroso-benzene and 1-nitroso-2-naphthol; in all enzymatic and nonenzymatic systems, the former was always reduced to phenyl-hydroxyl-amine and the latter to 1-amino-2-naphthol. 3. Pyridine compounds included NADH, APAD-4H2 and DBNA-4H2 in nonenzymatic systems, and liver alcohol dehydrogenase. Flavin compounds included 1,5-dihydrolumiflavin and various forms of reduced 5-ethyl-lumiflavin, in nonenzymatic systems, and the flavoenzymes glucose-oxidase and NADPH-cytochrome P450 reductase. 5. Pyridine coenzymes and their analogs reduced nitroso compounds by a direct hydride transfer, with a primary kinetic isotope of 9.5 +/- 2.2. 6. All flavin compounds (glucose-oxidase and its nonenzymatic analog 1,5-dihydrolumiflavin and NADPH-cytochrome P450 reductase and its analog 5-ethyl-1,5-dihydrolumiflavin) reduced aryl-nitroso compounds with high efficiency (k2 greater than 10(5)M(-1) min(-1)). 7. The flavin compounds have been shown to be much more efficient reductans of nitroso compounds, compared to pyridine coenzymes, both in enzymatic and nonenzymatic systems; the only exception to this rule presented the extremely efficient reduction of p-substituted aryl-nitroso compounds by liver alcohol dehydrogenase.  相似文献   

3.
Pyridine-type nucleotides were identified in cell-free extracts of the hyperthermophilic archaeon Pyrococcus furiosus by their ability to replace authentic nicotinamide adenine dinucleotide (phosphate) [NAD(P)] in assays using pure P. furiosus enzymes. The nucleotides were purified using a combination of ion-exchange and reverse-phase chromatography. They were identified as NAD and NADP by analyses using liquid chromatography-mass spectrometry and high performance liquid chromatography. Their intracellular concentrations were measured in P. furiosus grown using maltose and peptides as the carbon sources. The concentrations decreased during the lag phase but remained constant during the exponential phase at approximately 0.17 and 0.13 mM, respectively. The amount of NAD was significantly lower (more than four-fold lower) than that in mesophilic bacteria, although the NADP concentration was comparable. The internal concentrations of NADH and NADPH in P. furiosus were determined to be 0.14 mM and 0.04 mM, respectively. The overall cellular concentration of NAD(P)(H) in P. furiosus (0.48 mM) is about half the value in the mesophiles. The NAD(H)/NADP(H) ratio in P. furiosus is consistent with the preferred use of NADP by several catabolic enzymes that have been purified from this organism. The mechanisms by which hyperthermophiles stabilize these thermally labile nicotinamide nucleotides are not known.  相似文献   

4.
Raman spectra were acquired on ox femur samples treated with hydrazine to remove the organic components of bone. A large increase in the signal-noise ratio of the mineral spectrum resulted from the exposure of the mineral surface and the removal of fluorescent components of the organic matrix. The effect of hydrazine treatment of the mineral matrix has been reinvestigated and shown to be slight on the basis of second derivative FTIR data. This is the first time that this high resolution technique has been applied to biological minerals.  相似文献   

5.
The beta-subunit of the voltage-sensitive K(+) (K(v)) channels belongs to the aldo-keto reductase superfamily, and the crystal structure of K(v)beta2 shows NADP bound in its active site. Here we report that K(v)beta2 displays a high affinity for NADPH (K(d) = 0.1 micrometer) and NADP(+) (K(d) = 0.3 micrometer), as determined by fluorometric titrations of the recombinant protein. The K(v)beta2 also bound NAD(H) but with 10-fold lower affinity. The site-directed mutants R264E and N333W did not bind NADPH, whereas, the K(d)(NADPH) of Q214R was 10-fold greater than the wild-type protein. The K(d)(NADPH) was unaffected by the R189M, W243Y, W243A, or Y255F mutation. The tetrameric structure of the wild-type protein was retained by the R264E mutant, indicating that NADPH binding is not a prerequisite for multimer formation. A C248S mutation caused a 5-fold decrease in K(d)(NADPH), shifted the pK(a) of K(d)(NADPH) from 6.9 to 7.4, and decreased the ionic strength dependence of NADPH binding. These results indicate that Arg-264 and Asn-333 are critical for coenzyme binding, which is regulated in part by Cys-248. The binding of both NADP(H) and NAD(H) to the protein suggests that several types of K(v)beta2-nucleotide complexes may be formed in vivo.  相似文献   

6.
《Carbohydrate research》1987,163(1):9-14
Laser-Raman spectra of Na+ kappa-carrageenan, Na+ neocarrabiose 4-sulphate, and neocarrabiose in the region 700–1500 cm−1 are reported for solutions in H2O and D2O. The C-1-H-1α vibration, coupled with COH related modes, is assigned to a band at 840 cm−1, close to the maximum of the symmetrical COS stretching (∼850 cm−1). The symmetrical SO stretch is proposed to occur near 1040 cm−1 and is probably coupled with COH vibrations which give rise to strong bands in the region 1000–1100 cm−1. The intense band in the region 730–740 cm−1 is ascribed to a complex ring vibration.  相似文献   

7.
8.
The Raman and infrared spectra of poly(L -lysine) and poly(DL -lysine) in solution are reported and the effects of various salts are investigated. The results demonstrate that α-helix formation in solution is induced by specific salts and the spectral data support the hypothesis of regions of local order for poly(L -lysine) in aqueous solutions of low ionic strength.  相似文献   

9.
The activity of the voltage-sensitive K+ (Kv) channels varies as a function of the intracellular redox state and metabolism, and several Kv channels act as oxygen sensors. However, the mechanisms underlying the metabolic and redox regulation of these channels remain unclear. In this study we investigated the regulation of Kv channels by pyridine nucleotides. Heterologous expression of Kv1.5 in COS-7 cells led to the appearance of noninactivating currents. Inclusion of 0.1–1 mM NAD+ or 0.03–0.5 mM NADP+ in the internal solution of the patch pipette did not affect Kv currents. However, 0.5 and 1 mM NAD+ and 0.1 and 0.5 mM NADP+ prevented inactivation of Kv currents in cells transfected with Kv1.5 and Kv1.3 and shifted the voltage dependence of activation to depolarized potentials. The Kv-dependent inactivation of Kv currents was also decreased by internal pipette perfusion of the cell with 1 mM NAD+. The Kv1.5-Kv1.3 currents were unaffected by the internal application of 0.1 mM NADPH or 0.1 or 1 mM NADH. Excised inside-out patches from cells expressing Kv1.5-Kv1.3 showed transient single-channel activity. The mean open time and the open probability of these currents were increased by the inclusion of 1 mM NAD+ in the perfusate. These results suggest that NAD(P)+ prevents Kv-mediated inactivation of Kv currents and provide a novel mechanism by which pyridine nucleotides could regulate specific K+ currents as a function of the cellular redox state [NAD(P)H-to-NAD(P)+ ratio]. Shaker potassium ion channels; Kv subunits; patch clamp; aldo-keto reductase; COS-7 cells  相似文献   

10.
D Aslanian 《Life sciences》1983,32(25):2809-2825
The present review reports the coordinated application of three spectroscopic methods (Raman, infrared(IR) and inelastic electron tunneling spectroscopy (IETS)) in the study of the conformation of Ach and some analogues (beta-MeAch, Mu and Nic) in solid state, aqueous solution and in interaction with a surface. Useful correlated information is obtained by Raman and IR spectroscopies on the conformational possibilities of these molecules in transition from solid state to aqueous solution. With this information in hand as well as on the basis of Raman and IR study of the nonenzymatic hydrolysis of Ach, the first detailed experimental investigation of the interaction of Ach and beta-MeAch adsorbed on a surface (A1203) is realised by the IETS method. The results are used to discuss an interaction analogous to that of Ach with receptor and another one analogous to that of Ach and AchE.  相似文献   

11.
12.
M Blumenstein 《Biochemistry》1975,14(22):5004-5008
31P nuclear magnetic resonance spectra of the pyrophosphate group in NAD+ and NADH were recorded in the presence of beef heart lactate dehydrogenase and rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. At high lactate dehydrogenase concentrations (60 mg/ml), two NADH resonances are observed: a slowly exchanging peak which is shifted to 1.9 ppm downfield (relative to free NADH) and a rapidly exchanging peak with a downfield shift of 0.5-0.6 ppm. At lover concentrations (15 mg/ml) only the rapidly exchanging peak is observed thus indicating that the peak observed at-1.9 ppm is due to coenzyme bound to an aggregated enzyme species. With NAD+, rapid exchange and downfield shifts are observed at both enzyme and concentrations, with shifts of about 1.5 ppm and 0.6 ppm at 60 and 15 mg/ml, respectively. In the presence of glyceraldehydephosphate dehydrogenase, the results are independent of enzyme concentration, and slow exchange and upfield shifts of 0.4-0.6 ppm occur with each coenzyme. These data indicate that the environment of the pyrophosphate group of oxidized and reduced coenzyme is the same for a given dehydrogenase, but is different in one enzyme from the other. The resonances observed with glyceraldehydephosphate dehydrogenase are broader than those observed with lactate dehydrogenase. This is indicative of either shorter relaxation times with the former enzyme, or the presence of multiple, unresolved resonances.  相似文献   

13.
The noise free 300 MHz 1H NMR spectra of β-DPN+, recorded in the Fourier mode at 12° and 68°C have been completely analysed by extensive computer simulation. It is shown, whether the coenzyme exists as an equilibrium mixture of folded ? extended forms (12°C) or in overwhelminghly extended forms (68°C), the backbone of both the nicotinamide and adenine fragments preferentially exist in 2E-gg-g′g′ conformation. This orientation is significantly different from those reported in the solid state for the extended species in contact with the enzyme where 2E-tg-g′g′ and 3E-tg-g′g′ orientations have been observed. It is suggested that specific interactions of the backbone with the various amino acid residues in the enzyme induces conformational aberrations in the backbone. Intimate details of the backbone conformation of the extended forms of AcPy-DPN+ and β-TPN+ are also presented.  相似文献   

14.
15.
We have investigated the interactions between gramicidin and a model membrane composed of one phospholipid, dimyristoylphosphatidylcholine, as a function of the cosolubilization solvent and incubation time used in the sample preparation. Three organic solvents have been used; trifluoroethanol, a mixture of methanol/chloroform (1:1 v/v), and ethanol. Using Fourier transform infrared spectroscopy, we have demonstrated that the conformation adopted by gramicidin in the membrane is dependent upon the cosolubilization solvent used, and, only with trifluoroethanol, it is possible to incorporate gramicidin entirely as a beta 6.3-helix. Moreover, Raman spectroscopy results indicate that the orientation of the tryptophan side chains in gramicidin and their interaction with the hydrocarbon chains and the carbonyl groups of the lipids are also dependent on the cosolubilization solvent. On the other hand, the effect of the incorporation of gramicidin on the thermotropism of the lipid bilayer was found to be dependent upon the conformation of gramicidin in the lipid bilayers.  相似文献   

16.
We report Raman spectra of various cholinesterases: lytic tetrameric forms (G4) obtained by tryptic digestion of asymmetric acetylcholinesterase (AChE) from Torpedo californica and Electrophorus electricus, a PI-PLC-treated dimeric form (G2) of AChE from T marmorata, and the soluble tetrameric form (G4) of butyrylcholinesterase (BuChE) from human plasma. The contribution of different types of secondary structure was estimated by analyzing the amide I band, using the method of Williams. The spectra of cholinesterases in 10 mM Tris-HCl (pH 7.0) indicate the presence of both alpha-helices (about 50%) and beta-sheets (about 25%), together with 15% turns and 10% undefined structures. In 20 mM phosphate buffer (pH 7.0), the spectra indicated a smaller contribution of alpha-helical structure (about 35%) and an increased beta-sheet content (from 25 to 35%). This shows that the ionic milieu profoundly affects either the conformation of the protein (AChE activity is known to be sensitive to ionic strength), or the evaluation of secondary structure, or both. In addition, we analyzed vibrations corresponding to the side chains of aromatic and aliphatic amino acids. In particular, the analyses of the tyrosine doublet (830-850 cm-1) and of the tryptophan vibration at 880 cm-1 indicated that these residues are predominantly 'exposed' on the surface of the molecules.  相似文献   

17.
18.
This paper reports the first Raman spectroscopic study of the potassium complex of the cation-specific antibiotic valinomycin. Complete Raman spectra (140 to 3600 cm?1) of crystalline valinomycin-KSCN and its CCl4, CHCl3 and C2H5OH solutions are presented and used to probe the structure of the complex in these environments. In all cases a single, narrow peak is observed in the ester CO stretch region (1750 to 1775 cm?1) which contrasts strongly with the broad bands observed in solutions of uncomplexed valinomycin. This is consistent with the presence of a single conformation in which all six ester CO groups co-ordinate an enclosed potassium ion. We find that although the ester CO stretch frequencies of the complex are similar in the solid state and in non-polar solution (~1770 cm?1) they are considerably different in the presence of polar solvents (~1756 cm?1); this may indicate that the complexed potassium ion is still free to interact with nearby solvent ions (and possibly its counterion) through gaps in the hydrophobic “shield” provided by the hydrocarbon residues of valinomycin. In contrast the amide CO frequencies of the complex (~1650 cm?1) are solvent-independent. These groups are apparently strongly hydrogen-bonded to provide a rather rigid, compact framework for the complex conformation.  相似文献   

19.
We have studied the calorimetric and infrared spectroscopic properties of the amino acid proline which has been implicated in the stabilization of biomacromolecules during reduced water states. It has been suggested that the ability of this molecule to protect biomacromolecules during these stress states may be related to the formation of polymeric aggregates of proline monomers in solution. The structure of this aggregate is thought to be an alternates stack, forming a hydrophilic colloid-like polymer which is thought to interact with hydrophobic moieties of biomacromolecules, reducing the exposed hydrophobic area during reduced water conditions. Calorimetric data presented in this work show that in increasing concentration of proline in solution the enthalpy associated with the melting of bulk water is greatly reduced, indicating strong hydrogen bonding character of proline in aqueous solution. Proline shows two eutectic phase separations at moderate concentrations and one of these eutectics may be the proposed intermolecular state. A partial phase diagram for proline is presented. Fourier-transform infrared spectroscopic data indicate that the COO- asymmetric stretch of proline shows marked splitting with increasing proline concentration. This suggests that the carboxylate is in different environments, with the high energy vibrations representing COO- groups which are participating in the hydrogen bonding pattern associated with the formation of the intermolecular stack. Changes in the CH2 asymmetric and symmetric stretches of the pyrrolidine rings of proline are consistent with the proposed stack structure. We also suggest a possible mechanism by which these intermolecular associations may be important in the protection of biomacromolecules during reduced water states.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号