首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Alanine was the best amino donor among various amino acids and NH4Cl for the phenylalanine production of Micrococus luteus. l-Alanine was regenerated at the rate of 9.2 moles/min/g dry cells from NH4Cl and pyruvate by immobilized Clostridium butyricum-alanine dehydrogenase. l-Phenylalanine was continuously produced from hydrogen, NH4Cl and phenylpyruvate by coupling immobilized C. butyricum, alanine dehydrogenase and M. luteus. The rate of phenylalanine production was 1.74 moles/min/g dry cells.  相似文献   

2.
Nostoc cycadae isolated from the host Cycas revoluta grew well in medium devoid of combined nitrogen but maximum growth was in medium containing nitrate (4.1 g chlorophyll a ml-1). Aerated coralloid roots in the dark produced more NH3 when treated with l-methionine-dl-sulphoximine (MSO), an inhibitor of glutamine synthetase. With cultured N. cycadae and freshly isolated N. cycadae, NH3 production was enhanced by adding a host-tissue extract in the light or in the dark, whereas it was decreased by adding MSO. Nitrogenase activity was four times higher in coralloid root than in the cultured endophyte N. cycadae. The host-tissue extract may inhibit NH3 assimilatory pathways, thus inducing production of NH3 that can be utilized by the host itself.V. Singh, M.R. Goyle and E.R.S. Talpasayi are with the Laboratory of Algal Physiology and Biochemistry and A.K. Srivastava is with the Ecology Research Laboratory, both of the Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India.  相似文献   

3.
High anthocyanin-producing cell lines, which were grown in a dark or in a light-dark regime, were selected from callus cultures initiated from stem and leaf tissues of Aralia cordata Thunb. by small-cell-aggregate selection. To verify the optimum culture conditions for anthocyanin production, cells were tested by changing the various basal media, sucrose concentration and nitrogen source and concentration. Good growth was obtained in the dark on Linsmaier-Skoog's basal medium containing 1.0 mg l-1 2,4-d and 0.1 mg l-1 kinetin, 2% (w/v) sucrose and full strength of nitrogen concentration. However, the highest anthocyanin yield (10.3% dry wt) was obtained in the dark on B5 medium containing 1.0 mg l-1 2,4-d and 0.1 mg l-1 kinetin. Our results suggested that it has became feasible to find the most effective conditions for cell growth and anthocyanin production by optimizations of the nitrogen concentration and the ratio of NH4 + to NO3 - in the medium.Abbreviations B5 Gamborg (Gamborg et al. 1968) - 2,4-d 2,4-dichlorophenoxyacetic acid - LS Linsmaier and Skoog (Linsmaier & Skoog 1965) - MS Murashige and Skoog (Murashige & Skoog 1962) - NN Nitsch and Nitsch (Nitsch & Nitsch 1967) - WH White (White 1963) This paper is part 81 in the series Studies on Plant Tissue Cultures. For Part 80 see Furuya T, Sakamoto K, Iida K, Asada Y, Yoshikawa T, Sakai S & Aimi N (1992) Phytochemistry 31: 3065–3068.  相似文献   

4.
The production of extracellular enzymes by the thermophilic fungus Thermomyces lanuginosus was studied in chemostat cultures at a dilution rate of 0.08 h–1 in relation to variation in the ammonium concentration in the feed medium. Under steady state conditions, three growth regimes were recognised and the production of several extracellular enzymes from T. lanuginosus was recorded under different nutrient limitations ranging from nitrogen limitation to carbon/energy limitation. The range and the production of carbohydrate hydrolysing enzymes and lipase increased from Regime I (NH4Cl 600 mg l–1) to Regime III (NH4CI 1200 mg l–1), whereas production of protease was highest in Regime II (600 mg l–1 < NH4Cl <1200 mg l–1).  相似文献   

5.
The addition of l-glutamine, -alanine or l-glutamic acid strongly stimulates somatic embryo formation in carrot, not only in the number of somatic embryos formed but also with respect to their development. The effects of the amino acids on somatic embryogenesis were stronger than that of ammonium ion. In particular, l-glutamine strongly stimulated the development of somatic embryos. To clarify the different effects of amino acids and ammonium ion, the activity of glutamine synthetase (GS; EC 6.3.1.2), a key enzyme involved in nitrogen assimilation, was measured. Its activity decreased during the later stages of embryo development.Abbreviations -Ala -alanine - Glu l-glutamic acid - Gln l-glutamine - 2,4-D 2, 4-dichlorophenoxyacetic acid - -GHA l-glutamic acid -monohydroxamate - GS glutamine synthetase - MS medium Murashige & Skoog (1962) medium - MS-NH4 medium MS medium without NH4NO3 - MS+NH4 medium MS-NH4 medium with 10 mM NH4Cl - MS+ala medium MS-NH4 medium with 10 mM -alanine - MS+GLU medium MS-NH4 medium with 10 mM l-glutamic acid - MS+GLN medium MS-NH4 medium with 10 mM l-glutamine - NIR nitrite reductase - NR nitrate reductase  相似文献   

6.
Two l-threonine (l-serine) dehydratases (EC 4.2.1.16) of the thermophilic phototrophic bacterium Chloroflexus aurantiacus Ok-70-fl were purified to electrophoretic homogeneity by procedures involving anion exchange and hydrophobic interaction chromatography. Only one of the two enzymes was sensitive to inhibition by l-isoleucine (K i=2 M) and activation by l-valine. The isoleucine-insensitive dehydratase was active with l-threonine (K m=20 mM) as well as with l-serine (K m=10 mM) whereas the other enzyme, which displayed much higher affinity to l-threonine (K m=1.3 mM), was inactivated when acting on l-serine. Both dehydratases contained pyridoxal-5-phosphate as cofactor. When assayed by gel filtration techniques at 20 to 25° C, the molecular weights of both enzymes were found to be 106,000±6,000. In sodium dodecylsulfate-polyacrylamide gel electrophoresis, the two dehydratases yielded only one type of subunit with a molecular weight of 55,000±3,000. The isoleucine-insensitive enzyme was subject to a glucose-mediated catabolite repression.Abbreviations A absorbance - ile isoleucine - PLP pyridoxal-5-phosphate - SDS sodium dodecyl sulfate - TDH threonine dehydratase - U unit  相似文献   

7.
S. K. Goers  R. A. Jensen 《Planta》1984,162(2):117-124
The reaction catalyzed by chorismate mutase (EC 5.4.99.5) is a crucial step for biosynthesis of two aromatic amino acids as well as for the synthesis of phenylpropanoid compounds. The regulatory properties of two chorismate-mutase isoenzymes expressed in Nicotiana silvestris Speg. et Comes are consistent with their differential roles in pathway flow routes ending with l-phenylalanine and l-tyrosine on one hand (isoenzyme CM-1), and ending with secondary metabolites on the other hand (isoenzyme CM-2). Isoenzyme CM-1 was very sensitive to allosteric control by all three aromatic amino acids. At pH 6.1, l-tryptophan was a potent allosteric activator (K a =1.5 M), while feedback inhibition was effected by l-tyrosine (K i =15 M) or by l-phenylalanine (Ki=15 M). At pH 6.1, all three effectors acted competitively, influencing the apparent K m for chorismate. All three allosteric effectors protected isoenzyme CM-1 at pH 6.1 from thermal inactivation at 52° C. l-Tryptophan abolished the weak positive cooperativity of substrate binding found with isoenzyme CM-1 only at low pH. At pH 7.2, the allosteric effects of l-tyrosine and l-tryptophan were only modestly different, in striking contrast to results obtained with l-phenylalanine. At pH 7.2 (i) the K i for l-phenylalanine was elevated over 30-fold to 500 M, (ii) the kinetics of inhibition became non-competitive, and (iii) l-phenylalanine now failed to protect isoenzyme CM-1 against thermal inactivation. l-Phenylalanine may act at different binding sites depending upon the intracellular pH milieu. In-vitro data indicated that the relative ability of allosteric activation to dominate over allosteric inhibition increases markedly with both pH and temperature. The second isoenzyme, CM-2, was inhibited competitively by caffeic acid (K i =0.2 mM). Aromatic amino acids failed to affect CM-2 activity over a broad range of pH and temperature. Inhibition curves obtained in the presence of caffeic acid were sigmoid, yielding an interaction coefficient (from Hill plots) of n=1.8.Abbreviation DAHP synthase 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase  相似文献   

8.
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V m ), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K 0.5 MI , K 0.5 Na , and the Hill coefficient n. At 100 mM NaCl, K 0.5 MI was about 50 m and was independent of V m . At 0.5 mm myo-inositol, K 0.5 Na ranged from 76 mm at V m =–50 mV to 40 mm at V m =–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K I of 64 m at V m =–50 mV and 130 m at V m = –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V m =–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V m =–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V m . The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model. Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812 Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554.  相似文献   

9.
Summary The production of l-phenylalanine from the racemate d,l-phenyllactate in an enzyme membrane reactor has been examined. In a first step the racemate is dehydrogenated to the prochiral intermediate phenylpyruvate by the enzymes d-and l-hydroxyisocaproate dehydrogenase. In a second step phenylpyruvate is reductively aminated to l-phenylalanine by l-phenylalanine dehydrogenase. Both steps are dependent on coenzyme, the first one requires NAD, the second one NADH in stoichiometric amounts; in this way the coenzyme is regenerated and only required catalytically. The coenzyme is covalently bound to polyethylene glyco-20 000 and can thus be retained in the reactor analogously to the three enzymes. In order to optimize the continuous production of l-phenylalanine from d,l-phenyllactate, models of the reaction kinetics and of the reactor system have been set up. By means of the reactor model, we can calculate the optimum ratio of the three enzymes, the optimum coenzyme concentration and the optimum phenylpyruvate concentration in the feed.In this process, at a substrate concentration of 50 mM d,l-phenyllactate we reached a spacetime-yield of 28 g l-Phe/(l*d).Abbreviations PEG polyethylene glycol - d-HicDH d-hydroxyisocaproate dehydrogenase - l-HicDH l-hydroxyisocaproate dehydrogenase - PheDH l-phenylalanine dehydrogenase - V max maximum velocity - K M Michaelis-Menten constant - K l inhibition constant - R1 reaction rate of the d-HicDH forward reaction - R2 reaction rate of the d-HicDH reverse reaction - R3 reaction rate of the l-HicDH forward reaction - R4 reaction rate of the l-HicDH reverse reaction - R5 reaction rate of the PheDH forward reaction - R6 reaction rate of the PheDH reverse reaction - d-PLac d-phenyllactate - l-PLac l-phenyllactate - PPy phenylpyruvate - l-Phe l-phenylalanine - NH4 ammonium - residence time  相似文献   

10.
The transformed root culture of Polygonum tinctorium Lour. was established by infecting leaf explants with Agrobacterium rhizogenes A4. These cultures were examined for their growth and indigo content under various culture conditions. Among the four different culture media tested, SH medium showed the highest yield for root growth (28 mg dry wt/30 ml) and indigo production (152 g/dry wt). In SH medium, 30 g sucrose l–1, 2500 mg KNO3 l–1, 300 mg NH4H2PO4 l–1 were the best conditions for indigo production at pH 5.7. The production of indigo in hairy roots slightly increased with the addition of 200 mg chitosan l–1 (186 g/dry wt) and 20 U pectinase l–1 (181 g/dry wt).  相似文献   

11.
Summary Corynebacterium glutamicum ATCC 13 032 produces 13 g/l l-isoleucine from 200 mM -ketobutyrate as a synthetic precursor. In fed batch cultures up to 19 g/l l-isoleucine is formed. For optimal conversion the addition of 0.3 mM l-valine plus 0.3 mM l-leucine to the fermentation medium is required. The affinity constants for the acetohydroxy acid synthase (AHAS) were determined. (This enzyme directs the flow of -ketobutyrate plus pyruvate towards l-isoleucine and that of two moles of pyruvate to l-valine and l-leucine, respectively.) For -ketobutyrate the K m is 4.8×10-3 M, and V max 0.58 U/mg, for pyruvate the K m is 8.4×10-3 M, and V max 0.37 U/mg. Due to these characteristics the presence of high -ketobutyrate concentrations apparently results in a l-valine, l-leucine deficiency. This in turn leads to a derepression of the AHAS synthesis from 0.03 U/mg to 0.29 U/mg and high l-isoleucine production is favoured. The derepression of the AHAS synthesis induced by the l-valine, l-leucine shortage was directly proven with a l-valine, l-leucine, l-isoleucine auxotrophic mutant where the starvation of each amino acid resulted in an increased AHAS level. This is in accordance with the fact that only one AHAS enzyme could be verified by chromatographic and electrophoretic separations as being responsible for the synthesis of all three branched-chain amino-acids.  相似文献   

12.
    
Summary N--peptidyl-l-lysine p-nitroanilides may easily be prepared under mild conditions starting from commercially available H-Lys(Boc)-pNA (3) and N--tritylated amino acids using CF3-PyBOP (1) as condensating reagent. An illustration of this approach was given by the synthesis of the novel promising plasmin substrate isovaleryl-l-phenylalanyl-l-lysine p-nitroanilide hydrochloride (6).Abbreviations Boc t-butyloxycarbonyl - CF3-PyBOP [6-(trifluoromethyl)benzotriazol-l-yloxy]tris(pyrrolidino)phosphonium hexafluorophosphate - DEA diethylamine - DIEA N,N-diisopropylethylamine - Fmoc fluoren-9-yl-methoxycarbonyl - Isoval isovaleryl - pNA p-nitroanilide - Trt trityl - Z benzyloxycarbonyl  相似文献   

13.
We have reported that transglycosylation activity of endo--N-acetylglucosaminidase fromArthrobacter protophormiae (endo-A) can be enhanced to near completion using GlcNAc as an acceptor in a medium containing 30% acetone (Fan J-Q, Takegawa K, Iwahara S, Kondo A, Kato I, Abeygunawardana C, Lee YC (1995)J Biol Chem 270: 17723–29). In this paper, we found that the endo-A can also transfer an oligosaccharide, Man9GlcNAc, tol-Fuc using Man9GlcNAc2Asn as donor substrate in a medium containing 35% acetone. The transglycosylation yield was greater than 25% when 0.2m l-Fuc was used as acceptor. The transglycosylation product was purified by high performance liquid chromatography on a graphitized carbon column and the presence ofl-Fuc was confirmed by sugar composition analysis and electrospray mass spectrometry. Sequential exo-glycosidase digestion of pyridyl-2-aminated transglycosylation product, Man9GlcNAc-l-Fuc-PA, revealed that a -anomeric configuration linkage was formed between GlcNAc andl-Fuc. The GlcNAc was found to be 1,2-linked tol-Fuc by two methods; i) collision-induced decomposition on electrospray mass spectrometry after periodate oxidation, reduction and permethylation of Man9GlcNAc-l-Fuc; and ii) preparation of Man9GlcNAc-l-Fuc-PA, its periodate oxidation and reduction, followed by hydrolysis and HPLC analysis. Thus, the structure of the oligosaccharide synthesized by endo-A transglycosylation was determined to be Man9GlcNAc(1,2)-l-Fuc. Methyl -l-fucopyranoside,l-Gal are also acceptors for the enzymic transglycosylation. However, transglycosylation failed when methyl -l-fucopyranoside,d-Fuc andd-Gal were used. These results indicate that the endo-A requires not only 3-OH and 4-OH to be equatorial but also a4C1-conformation or equivalent conformation of the acceptor to perform transglycosylation.Abbreviations endo-A endo--N-acetylglucosaminidase fromArthrobacter protophormiae - PA pyridyl-2-amino- - AP aminopyridine - GlcNAc N-acetyl-d-glucosamine - Man mannose - Gal galactose - Fuc fucose - Glc glucose - PA-C2 PA-glycolaldehyde - PA-C3 PA-l-glyceraldehyde - PA-C4 PA-d-threose - HPAEC-PAD high performance anion exchange chromatography with pulsed amperometric detector - HPLC high performance liquid chromatography - ODS octadecylsilyl - ES-MS electrospray mass spectrometry - CID collision-induced decomposition  相似文献   

14.
Properties and regulation of anthranilate synthase from Alcaligenes eutrophus H 16 were investigated. Anthranilate synthase was partially purified from crude extracts by affinity chromatography on tryptophan-substituted Sepharose, and was used for kinetic measurements. During the purification procedure the enzyme was stabilized by 50 mM l-glutamine or during chromatography on DEAE-cellulose and Sephadex G-200 with 30% glycerol, respectively.The glutamine dependent activity of anthranilate synthase was examined; it showed little change between pH 8.4 and pH 9.1. The Arrhenius plot was broken and the activation energy, H, calculated therefrom amounted to 8.9 kcal/mole up to 30°C and 5.5 kcal/mole at higher temperatures. The molecular weight determined by gelfiltration on Sephadex G-200 and by sucrose density gradient centrifugation resulted in 158000 and 126000, respectively. The K m -values for the two substrates chorismate and glutamine were found to be 5 M and 560 M, respectively.Anthranilate synthase was strongly inhibited by l-tryptophan; the only amino acid that affected enzyme activity. Homotropic interactions for chorismate (Hill coefficient n=1.4) were obtained in the presence of l-tryptophan. 50% inhibition were caused by 10 M l-tryptophan at 100 M chorismate. The inhibition with respect to l-glutamine was noncompetitive.Anthranilate synthase was not associated to phosphoribosyl transferase and easily separable from the latter by different chromatographic methods.Abbreviation TEA triethanolamine  相似文献   

15.
The concentration dependence of the influx ofl-lysine in excised roots ofArabidopsis thaliana seedlings was analyzed for the wild-type (WT) and two mutants,rlt11 andraec1, which had been selected as resistant to lysine plus threonine, and to S-2-aminoethyl-l-cysteine, respectively. In the WT three components were resolved: (i) a high-affinity, low-capacity component [K m = 2.2 M;V max = 23 nmol·(g FW)–1·h–1]; (ii) a low-affinity, high-capacity component [K m = 159 M;V max = 742 nmol·(g FW)–1·h–1]; (iii) a component which is proportional to the external concentration, with a constant of proportionalityk = 104 nmol·(g FW)–1 h–1];·mM–1. The influx ofl-lysine in the mutants was lower than in the WT, notably in the concentration range 0.1–0.4 mM, where it was only 7% of that in the WT. In both mutants the reduced influx could be fully attributed to the absence of the low-affinity (high-K m ) component. This component most likely represents the activity of a specific basic-amino-acid transporter, since it was inhibited by several other basic amino acids (arginine, ornithine, hydroxylysine, aminoethylcysteine) but not byl-valine. The high-affinity uptake ofl-lysine may be due to the activity of at least two general amino acid transporters, as it was inhibitable byl-valine, and could be further dissected into two components with a high affinity (K i = 1–5 M; and a low affinity (K i = 0.5–1mM) forl-valine, respectively. Therlt11 andraecl mutant have the same phenotype and the corresponding loci were mapped on chromosome 1, but it is not yet clear whether they are allelic.Abbreviations AEC S-2-aminoethyl-l-cysteine - K i equilibrium constant - WT wild-type  相似文献   

16.
Park  Heum Gi  Lee  Kyun Woo  Cho  Sung Hwoan  Kim  Hyung Sun  Jung  Min-Min  Kim  Hyeung-Sin 《Hydrobiologia》2001,(1):369-374
The freshwater rotifer, Brachionus calyciflorus is one of the live food organisms used for the mass production of larval fish. In this study possibility of obtaining high density cultures of the freshwater rotifer B. calyciflorus were investigated. The two culture systems used differed in their air and dissolved oxygen supplies using three temperatures in each case: 24, 28 and 32 °C. Rotifers were batch-cultured using 5 l-vessels and fed with the freshwater Chlorella. The growth rate of rotifers significantly increased with an increase in temperature. The maximum density of the rotifers with air-supply at 24 °C, 6500 ind. ml–1, was significantly lower than those cultured at 28 and 32 °C, i.e. 8600 and 8100 ind. ml–1, respectively. Dissolved oxygen levels decreased with time and ranged from 0.8 to 1.4 mg l–1 when the density of freshwater rotifer was the highest at each temperature. The highest density (19200 ind. ml–1) of freshwater rotifer was obtained in cultures with a supply of oxygen at 28 °C. Densities of 13500 and 17200 ind. ml–1 were found at 24 and 32 °C, respectively. Levels of NH3-N increased with time and a dramatic increase of NH3-N was observed at high temperatures. Levels of NH3-N at 24, 28 and 32 °C were 13.2, 18.5 and 24.5 mg l–1, respectively. These levels coincided with the highest rotifer density at each of the three temperatures. When rotifers were cultured with an oxygen-supply and pH was adjusted to 7, the maximum density of rotifer reached 33500 ind. ml–1 at 32 °C . These results suggested that high density culture of freshwater rotifer, B. calyciflorus could be achieved under optimal conditions with DO value of exceeding 5 mg l–1 and NH3-N values of lower than 12.0 mg l–1.  相似文献   

17.
18.
Summary Ethylenediamine (EDA) is toxic to the cyanobacterium Anabaena variabilis and inhibits nitrogenase activity. The inhibition of nitrogenase was prevented by pretreatment of cells with l-methionine-d,l-sulphoximine (MSX). Mutant strains of Anabaena variabilis (ED81, ED92), resistant to EDA, had low levels of glutamine synthetase (GS) biosynthetic activity compared with the wild type strain. ED92 had a low level of GS protein whereas ED81 had a similar level to that of the parent strain as estimated using antibodies against GS. Both strains fixed N2 and liberated NH4 + into the media. Following immobilization of the mutant strains, sustained photoproduction of NH4 + was obtained in air-lift reactors at rates of up to 50 mol NH4 + mg chl a–1 h–1, which were comparable to the rates obtained when immobilized cyanobacteria were treated with MSX.Abbreviations EDA 1,2-diaminoethane (ethylenediamine) - GS glutamine synthetase - MSX l-methionine-d,l-sulphoximine  相似文献   

19.
A protoplast-to-plant regeneration system has been established for sweet potato (Ipomoea batatas (L.) Lam.) and its wild relative, I. lacunosa L. Viable protoplasts, isolated from preplasmolyzed stems and petioles of in vitro-grown plants, were cultured on liquid MS (Murashige & Skoog 1962) medium that supported cell division and colony formation. Embryogenic calli of sweet potato were induced on agar-solidified MS medium supplemented with 3% (w/v) sucrose, 50 mg l-1 casamino acids, 0.2–0.5 mg l-1 2,4-d, 1.0 mg l-1 kinetin and 1.0 mg l-1 ABA. On average, 3 plants were regenerated from a single sweet potato callus subcultured on semi-solid MS medium containing 3% (w/v) sucrose, 800 mg l-1 glutamine, 2.0 mg l-1 BA or 1.0 mg l-1 kinetin and 1.0 mg l-1 GA3. Embryogenic calli of I. lacunosa L. were initiated on semi-solid MS medium containing 0.2–0.5 mg l-1 IAA and 1.0–2.0 mg l-1 BA. An average of 5 plants was regenerated from a single sweet potato callus subcultured on semi-solid MS medium containing 0.5 or 1.0 mg l-1 GA3.Abbreviations ABA abscisic acid - BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole acetic acid - MES 2-(N-morpholino)-ethane sulfonic acid - NAA -naphthaleneacetic acid  相似文献   

20.
Epimastigotes ofTrypanosoma cruzi, the causative agent of Chagas disease, catabolize proteins and amino acids with production of NH3, and glucose with production of reduced catabolites, chiefly succinate andl-alanine, even under aerobic conditions. This aerobic fermentation of glucose is probably due to both the presence of low levels of some cytochromes, causing a relative inefficiency of the respiratory chain for NADH reoxidation during active glucose catabolism, and the lack of NADH dehydrogenase and phosphorylation site I, resulting in the entry of reduction equivalents into the chain mostly as succinate. Phosphoenol pyruvate carboxykinase and pyruvate kinase may play an essential role in diverting glucose carbon to succinate orl-alanine, andl-malate seems to be the major metabolite for the transport of glucose carbon and reduction equivalents between glycosome and mitochondrion. The parasite contains proteinase and peptidase activities. The major lysosomal cysteine proteinase, cruzipain, has been characterized in considerable detail, and might be involved in the host/parasite relationship, in addition to its obvious role in parasite nutrition. Among the enzymes of amino acid catabolism, two glutamate dehydrogenases (one NADP- and the other NAD-linked), alanine aminotransferase, and the major enzymes of aromatic amino acid catabolism (tyrosine aminotransferase and aromatic -hydroxy acid dehydrogenase), have been characterized and proposed to be involved in the reoxidation of glycolytic NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号