首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An investigation has been carried out of the relationship between changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and concomittant changes in the lateral diffusion of proteins and lipid probes in membranes. Plasma membranes from lymphocytes and a CH1 mouse lymphoma line were treated with up to 70 mol% (relative to the total membrane phospholipid) of oleic or linoleic fatty acids. Under these conditions the fluorescence polarization of DPH decreased by between 8 and 15% which, in the framework of the microviscosity approach, suggests a membrane fluidity change of between 20 and 50%. The lateral diffusion coefficients of surface immunoglobin and the lipid probes 3,3′-dioctadecylindocarbocyanine and pyrene were also measured in these membranes using the fluorescence photobleaching recovery technique and the rate of pyrene excimer formation. The diffusion rates were found to be unaffected by the presence of free fatty acids. Hence despite large ‘microviscosity’ changes as reported by depolarization of DPH fluorescence, lateral diffusion coefficients are essentially unchanged. This finding is consistent with the idea that perturbing agents such as free fatty acids do not cause a general fluidization of the membrane but act locally to alter, for example, protein function. It is also consistent with the suggestion that lateral mobility of membrane proteins is not modulated by the lipid viscosity.  相似文献   

2.
The presence of proteins in lipid bilayers always decreases the excimer formation rate of pyrene and pyrene lipid analogues in a way that is related to the protein-to-lipid ratio. Energy transfer measurements from intrinsic tryptophans to pyrene have shown (Engelke et al., 1994), that in microsomal membranes, the excimer formation rate of pyrene and pyrene fatty acids is heterogeneous within the membrane plane, because a lipid layer of reduced fluidity surrounds the microsomal proteins. This study investigates whether of not liposomes prepared from egg yolk phosphatidylcholine with incorporated gramicidin A give results comparable to those from microsomal membranes. The results indicate that the influence of proteins on the lipid bilayer cannot be described by one unique mechanism: Small proteins such as gramicidin A obviously reduce the excimer formation rate by occupying neighboring positions of the fluorescent probe and thus decrease the pyrene collision frequency homogeneously in the whole membrane plane, while larger proteins are surrounded by a lipid boundary layer of lower fluidity than the bulk lipid. The analysis of the time-resolved tryptophan fluorescence of gramicidin A incorporated liposomes reveals, that the tryptophan quenching by pyrene is stronger for tryptophans located closely below the phospholipid headgroup region because of the pyrene enrichment in this area of the lipid bilayer. Received: 29 December 1996/Revised: 15 May 1996  相似文献   

3.
The effect of three water-soluble fusogens: dimethyl sulfoxide (DMSO), glycerol and sucrose on the structural properties of model lipid membranes has been studied by electron spin resonance (ESR) using 5-doxylstearic acid as a spin probe and by fluorescence spectroscopy using pyrene as an excimer forming fluorescent probe. All three fusogens tested produce a marked increase in the order parameter of the region close to the polar surface of the lipid bilayer. The ordering effect of DMSO, but not of glycerol and sucrose, is much stronger with respect to membranes prepared from acidic than from neutral phospholipids. The membrane-perturbing action of glycerol and sucrose manifests itself also in the reduced lateral mobility of membrane incorporated pyrene, indicating thus a decreased fluidity of the bilayer hydrophobic region. The structural perturbations produced in model membranes by DMSO, glycerol and sucrose are discussed in relation to the mechanism by which these substances promote cell fusion.  相似文献   

4.
Summary The lateral mobility of pyrene, pyrene decanoic acid, and 1-palmitoyl-2-pyrene decanoyl-phosphatidyl choline (pyrene lecithin) in lipid bilayers is determined by the excimer formation technique. This method is applied to vesicles of lecithins differing in chain length and in the degree of saturation of the hydrocarbon chains. These values are compared with results in cephalins of different chain length and in dipalmitoyl phosphatidic acid at variable pH. The influence of cholesterol is investigated. The results are analyzed in terms of the Montroll model of two-dimensional random walk. The jump frequency of the probe molecule within the lipid lattice is obtained. The advantage of this measure of transport in lipid layers is that it does not involve lipid lattice parameters.The main results of the present work are: (i) The lateral mobility of a given solute molecule in lamellae of saturated lecithins is independent of hydrocarbon chain length and rather a universal function of temperature. (ii) In unsaturated dioleyl lecithin the amphiphatic molecules have lateral mobilities of the same size as in saturated lipids. The jump frequency of pyrene, however, is by a factor of two larger in the unsaturated lecithin. (iii) The jump frequencies in phosphatidyl ethanolamines are about equal to those in lecithins. (iv) In phosphatidic acid layers the hopping frequencies depend on the chargers of the head groups of both the lipids and the probes. (v) Cholesterol strongly reduces the jump frequency in fluid layers. (vi) The lateral mobility in biological membranes is comparable to that in artificial lipid bilayers.The experimental results are discussed in terms of the free volume model of diffusion in fluids. Good agreement with the predictions made from this model is found. A striking result is the observation of a tilt in dioleyl-lecithin bilayer membranes from the hopping frequencies of pyrene and pyrene lecithin. A tilt angle of -17° is estimated.  相似文献   

5.
In membranes of the small prokaryote Acholeplasma laidlawii bilayer- and nonbilayer-prone glycolipids are major species, similar to chloroplast membranes. Enzymes of the glucolipid pathway keep certain important packing properties of the bilayer in vivo, visualized especially as a monolayer curvature stress ('spontaneous curvature'). Two key enzymes depend in a cooperative fashion on substantial amounts of the endogenous anionic lipid phosphatidylglycerol (PG) for activity. The lateral organization of five unsaturated A. laidlawii lipids was analyzed in liposome model bilayers with the use of endogenously produced pyrene-lipid probes, and extensive experimental designs. Of all lipids analyzed, PG especially promoted interactions with the precursor diacylglycerol (DAG), as revealed from pyrene excimer ratio (Ie/Im) responses. Significant interactions were also recorded within the major nonbilayer-prone monoglucosylDAG (MGlcDAG) lipids. The anionic precursor phosphatidic acid (PA) was without effects. Hence, a heterogeneous lateral lipid organization was present in these liquid-crystalline bilayers. The MGlcDAG synthase when binding at the PG bilayer interface, decreased acyl chain ordering (increase of membrane free volume) according to a bis-pyrene-lipid probe, but the enzyme did not influence the bulk lateral lipid organization as recorded from DAG or PG probes. It is concluded that the concentration of the substrate DAG by PG is beneficial for the MGlcDAG synthase, but that binding in a proper orientation/conformation seems most important for activity.  相似文献   

6.
Incubation of placental brush border membrane (BBM) along with sonicated vesicles of exogenous lipids (egg yolk PC) in the presence of phospholipid-transfer protein (PL-TP) showed a decrease in the alkaline phosphatase activity due to the change in the membrane micro-environment, such as fluidity. Effect of substrate concentration was tested by Lineweaver-Burk plot, which showed decreased V(max) and K(M). The effect of temperature was probed by the Arrhenius plot, which showed no change in transition temperature, but a decline in the energy of activation both below and above the transition temperature. The protein-catalyzed transfer of phospholipid from the donor unilamellar vesicles resulted in a substantial increase in the BBM phospholipid and a net decrease in cholesterol/phospholipid molar ratio. The change in membrane fluidity was assessed by translational as well as rotational diffusion of membrane extrinsic fluorescent probes, pyrene and diphenyl-hexatriene. An increased lateral mobility was recorded by the increased pyrene excimer formation. A decrease in fluorescent polarization of diphenyl-hexatriene was observed, which led to the decrease in fluorescence anisotropy and order parameter, and therefore, an increase in membrane fluidity (rotational diffusion). Mean anisotropy parameter was also decreased in the presence of PL-TP. Thus, the placental BBM alkaline phosphatase activity showed a distinct lipid dependence which may have important physiological consequences.  相似文献   

7.
Effect of gradual increase of cholesterol content in T-lymphocyte membranes on the structure and physical state of plasmic membrane lipids and activities of the membrane-bound enzymes was investigated. The increase in cholesterol content was shown to result in a two-phase change of luminescence parameters of the fluorescent probes dimethylaminochalcone and pyrene, which indicates heterogeneity of cholesterol in the membranes. With the growth of steroid content in the cell membranes, at first, we observed a sharp decrease in the lipid bilayer fluidity and inhibition of Na+, K+-ATPase activity, which at the molar ratio cholesterol/phospholipids 0.6 in thymocyte membranes, remains at the same level. With higher cholesterol concentrations ATPase activity did not change. The effect of cholesterol on ATPase activity was in a good agreement with the effect of membrane lipids on fluidity. It is suggested that two pools of cholesterol molecules exist in the membranes, differing in their effects of bilayer fluidity and functional activity of the membranes.  相似文献   

8.
Intramolecular excimer formation of 1,3-di(2-pyrenyl)propane was used to study the fluidity of liposomes prepared from membrane polar lipids of Bacillus stearothermophilus. On the basis of spectral data, local polarity and polarizability parameters were established suggesting that the probe molecules are located well inside the membranes, but displaced towards the polar head groups of the phospholipid molecules. The excimerization rate is very sensitive to lipid phase transitions and pretransitions of synthetic pure lipid bilayers. In bacterial lipids from cultures grown at 55 and 68 degrees C, thermal profiles of excimer to monomer intensity ratios (I'/I) show a broad transition which is displaced to higher temperatures in response to the increase of the growth temperature; these results correlate well with differential scanning calorimetry data and fluorescence polarization of diphenylhexatriene. Additionally, lipid bilayers of bacteria grown at 68 degrees C exhibit a decreased membrane fluidity, as monitored by both fluorescent probes.  相似文献   

9.
The effect of ionic strength on the fluidity of rabbit intestinal brush-border membranes has been studied using two fluorescence probes, pyrene and 1-anilino-8-naphthalene sulfonate (ANS). The imposition of a potential gradient on the pyrene-probed membrane vesicles (out greater than in) with increasing NaCl concentration in the medium resulted in a marked enhancement of the excimer formation efficiency, accompanied by a decrease in the ratio of fluorescence intensities of the probe at 392 and 375 nm. Fluorescence polarization of the pyrene-membrane complex is independent of temperature in the absence of salts, while it is dependent on temperature from 10 to 47 degrees C in the presence of salts, as shown by the thermal Perrin plots of polarization. It has been demonstrated that there is a linear relationship between the changes in the pyrene excimer formation efficiency in the membranes and of the values of the binding parameters of ANS for the membranes. From these results, it is suggested that the lipid phase of the membranes becomes more fluid by shielding negatively charged groups of the membrane surface and that there is a fairly close correlation between the membrane organization and the membrane surface charge density.  相似文献   

10.
Doxyl stearate spin probes which differed in the attachment of the nitroxide free radical to the fatty acid have been used to study membrane fluidity in ozone-treated bovine erythrocytes and liposomes. Analysis of EPR spectra of spin labels incorporated into lipid bilayer of the erythrocyte membranes indicates an increase in the mobility and decrease in the order of membrane lipids. In isolated erythrocyte membranes (ghosts) the most significant changes were observed for 16-doxylstearic acid. In intact erythrocytes statistically significant were differences for 5-doxylstearic acid. The effect of ozone on liposomes prepared from a lipid extract of erythrocyte lipids was marked in the membrane microenvironment sampled by all spin probes. Ozone apparently leads to alterations of membrane dynamics and structure but does not cause increased rigidity of the membrane.  相似文献   

11.
The effect of ionic strength on the fluidity of rabbit intestinal brush-border membranes has been studied using two fluorescence probes, pyrene and 1-anilino-8-naphthalene sulfonate (ANS). The imposition of a potential gradient on the pyrene-probed membrane vesicles (out > in) with increasing NaCl concentration in the medium resulted in a marked enhancement of the excimer formation efficiency, accompanied by a decrease in the ratio of fluorescence intensities of the probe at 392 and 375 nm. Fluorescence polarization of the pyrene-membrane complex is independent of temperature in the absence of salts, while it is dependent on temperature from 10 to 47°C in the presence of salts, as shown by the thermal Perrin plots of polarization. It has been demonstrated that there is a linear relationship between the changes in the pyrene excimer formation efficiency in the membranes and of the values of the binding parameters of ANS for the membranes. From these results, it is suggested that the lipid phase of the membranes becomes more fluid by shielding negatively charged groups of the membrane surface and that there is a fairly close correlation between the membrane organization and the membrane surface charge density.  相似文献   

12.
The effect of ethanol on the physical properties of neuronal membranes   总被引:1,自引:0,他引:1  
Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.  相似文献   

13.
H Hauser  N Gains  G Semenza  M Spiess 《Biochemistry》1982,21(22):5621-5628
The temperature dependence of the packing (order) and fluidity (microviscosity) of rabbit small, intestinal brush border vesicle membranes and of liposomes made from their extracted lipids has been investigated by using a variety of lipid spin probes. The lipids in the brush border membrane are present essentially as a bilayer. Compared to other mammalian membranes, the brush border membrane appears to be characterized by a relatively high packing order as well as microviscosity. At body temperature, the lipid molecules undergo rapid, anisotropic motion, which is essentially a fast rotation about an axis approximately perpendicular to the bilayer normal. Both the order (motional anisotropy) and the microviscosity increase with decreasing temperature and with increasing distance from the center of the bilayer. Qualitatively similar motional or fluidity gradients have been reported for other mammalian and bacterial membranes. The liposomes made from the extracted lipids have a somewhat lower packing order and a slightly higher fluidity than brush border vesicle membranes. The differences are, however, small indicating that the packing and the fluidity (microviscosity) of the membrane are primarily determined by the lipid composition. Membrane-associated proteins and cytoskeleton cannot play a dominant role in determining the order and fluidity of the lipid bilayer. Discontinuities are observed in the temperature dependence of various spectral parameters, the order parameter S, the rotational correlation time tau, and 2,2,6,6-tetramethylpiperidinyloxy partitioning. They are assigned to phase transitions and/or phase separations of the membrane lipids. These discontinuities occur at about 30, 20, and 13 degrees C for 5-doxyl-, 12-doxyl-, and 16-doxylstearic acid, respectively. The apparent transition temperature depends on the location of the spin probe along the bilayer normal, being higher the closer the probe is to the membrane surface. This indicates the possibility that chain melting is progressive and spreads with increasing temperature from the center of the membrane outward.  相似文献   

14.
A pressure-induced decrease of the lateral diffusion in pure and cholesterol containing phosphatidylcholine bilayer membranes has been determined by the excimer formation technique using pyrene as probe molecule. The experimental results at pressures up to 150 bars are described satisfactorily by the free volume theory of a molecular transport in liquids. A pressure increase of extrapolated 575 bars decreases the lateral diffusion of lipids by a factor of two in pure dipalmitoylphosphatidylcholine membranes. Higher pressures are necessary to induce the same effect in cholesterol containing membranes. This result is interpreted by the condensing effect of cholesterol in fluid bilayer membranes.  相似文献   

15.
J R Wiener  R Pal  Y Barenholz  R R Wagner 《Biochemistry》1985,24(26):7651-7658
In order to investigate the mode of interaction of peripheral membrane proteins with the lipid bilayer, the basic (pI approximately 9.1) matrix (M) protein of vesicular stomatitis virus was reconstituted with small unilamellar vesicles (SUV) containing phospholipids with acidic head groups. The lateral organization of lipids in such reconstituted membranes was probed by fluorescent phospholipid analogues labeled with pyrene fatty acids. The excimer/monomer (E/M) fluorescence intensity ratios of the intrinsic pyrene phospholipid probes were measured at various temperatures in M protein reconstituted SUV composed of 50 mol % each of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). The M protein showed relatively small effects on the E/M ratio either in the gel or in the liquid-crystalline phase. However, during the gel to liquid-crystalline phase transition, the M protein induced a large increase in the E/M ratio due to phase separation of lipids into a neutral DPPC-rich phase and DPPG domains presumably bound to M protein. Similar phase separation of bilayer lipids was also observed in the M protein reconstituted with mixed lipid vesicles containing one low-melting lipid component (1-palmitoyl-2-oleoylphosphatidylcholine or 1-palmitoyl-2-oleoylphosphatidylglycerol) or a low mole percent of cholesterol. The self-quenching of 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence, as a measure of lipid clustering in the bilayer, was also studied in M protein reconstituted DPPC-DPPG vesicles containing 5 mol % NBD-phosphatidylethanolamine (NBD-PE). The quenching of NBD-PE was enhanced at least 2-fold in M protein reconstituted vesicles at temperatures within or below the phase transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of lipid peroxidation (LPO) on the physical state (fluidity) of the rat brain synaptosomal lipid bilayer matrix and the annular lipid domains were investigated using the fluorescent probe pyrene. The parameters of pyrene fluorescence intensity alpha = IE/IM were measured at excitation wavelengths 280 nm and 340 nm (alpha 280 and alpha 340), reflecting fluidity of lipid bilayer matrix and annular lipids, respectively. LPO induction was shown to result in changes of fluidity of both the bilayer and annular lipids. Upon reducing formation of LPO products by carnosine, fluidity changes of both the lipid bilayer matrix and annular lipids were diminished. Conformational changes of the annular lipid domain by LPO may therefore be considered as a possible cause of the functional changes in the receptor mediated responses and of the inactivation of membrane-bound enzymes by oxidative stress.  相似文献   

17.
Phagocyte superoxide (O2-) response is primed by a variety of physiologic compounds including the neutrophil secretory proteases cathepsin G and elastase. To study whether protease priming of neutrophil O2- response is related to changes in membrane physical state, we examined enzyme effects on the order and lateral mobility of lipid probes in intact neutrophil membranes. Exposure to cathepsin G (5 micrograms/ml) or elastase (10 micrograms/ml) caused a significant decrease in fluorescence anisotropy of the probe trimethylammonium diphenylhexatriene in neutrophil plasma membranes (0.279 to 0.256 for cathepsin G, 0.274 to 0.256 for elastase, p less than 0.02 for both), indicating a decrease in phospholipid chain order in the surface membrane bilayer. Cathepsin G and elastase also caused significant increases in membrane lipid lateral mobility as measured by excimer formation of the fluorescent probe 1-pyrenedecanoic acid (for cathepsin G, a 107% increase, and for elastase, a 44% increase in excimer/monomer fluorescence ratio, p less than 0.001). Enzyme effects on membrane structure were dependent on intact proteolytic activity, and were cell specific; the proteases had no effect on lipid order or lateral mobility in liposomes. In corollary studies, the possible association between the physical state of the polymorphonuclear leukocyte membrane and O2- generation was analyzed with the membrane modifying compounds, linoleic acid, ethanol, and cholesterol. Cell exposure to linoleic acid (1 microM) caused a significant decrease in lipid order and an increase in lipid lateral mobility along with increased O2- production to N-formyl-Met-Leu-Phe (fMLP) (191%) and phorbol myristate acetate (PMA) (39%), p less than 0.02 for each. 3 mM ethanol also augmented O2- response to fMLP (31%) and PMA (48%) and caused a significant decrease in lipid order, but did not affect lipid lateral mobility. Treatment with cholesteryl hemisuccinate (100 micrograms/ml) resulted in increased lipid order and decreased lipid lateral mobility, as well as decreased neutrophil superoxide response to fMLP (-61%, p less than 0.001) and PMA (-50%, p less than 0.02). We then examined whether modulation of membrane physical state may explain the mechanism of action of a known priming agent by studying the effects of low concentrations of a diacylglycerol. Cells treated with 10 microM 1-oleoyl-2-acetyl-sn-glycerol had a greater than 8-fold increase in superoxide response to fMLP (p less than 0.001) while demonstrating a significant decrease in lipid order (0.289 to 0.281, p less than 0.01) and a 50% increase in lipid lateral mobility (p less than 0.001).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Fluorescence probes located in different membrane regions were used to evaluate the effects of chlorpromazine .HCl on structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and lipid bilayer thickness) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. The experimental procedure was based on the selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, radiationless energy transfer from the tryptophan of membrane proteins to Py-3-Py, and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS). In this study, chlorpromazine .HCl decreased the lateral mobility of Py-3-Py in a concentration dependent-manner, showed a greater ordering effect on the inner monolayer than on the outer monolayer, decreased annular lipid fluidity in a dose dependent-manner, and contracted the membrane lipid bilayer. Furthermore, the drug was found to have a clustering effect on membrane proteins.  相似文献   

19.
Highly purified plasma membranes of bovine thyroid were obtained by differential pelleting followed by discontinuous gradient centrifugation in a swing-out rotor. Subfractions of plasma membranes were prepared by affinity chromatography on Con A-Sepharose. The final membrane fractions were enriched 25-30-fold over homogenate in 5'-nucleotidase and alkaline phosphatase and displayed a protein to phospholipid ratio of 1.67 and a cholesterol to phospholipid molar ratio of 0.55. The phospholipid composition did not deviate appreciably from that of whole tissue except for the higher sphingomyelin level (22.5 vs. 14.0%). The predominant fatty acids were palmitic (16:0), oleic (18:1), stearic (18:0) and linoleic (18:2) acid. The physical state of the membrane was studied by (i) calculation of the lipid structural order parameter SDPH from steady-state fluorescence anisotropy determinations of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH); (ii) estimation of the lateral diffusion coefficient of pyrene following excimer formation. These parameters were determined in native thyroid plasma membranes and in reconstituted vesicles, obtained by detergent dialysis from octylglucoside solubilized membrane components. The presence of membrane protein or neutral lipids induced more restraint on the movements of the fluorophores. The lipid order parameter, SDPH was mainly determined by the neutral lipids. Subfractions of plasma membrane enriched in luminal membranes have a slightly lower fluidity (higher SDPH and lower Ddiff values) than subfractions enriched in basolateral membranes. This difference appears to be due to both differences in lipid as well as protein composition. Under physiological conditions, no significant alterations in probe dynamics could be observed upon addition of thyrotropin or cholera toxin, even at micromolar concentrations.  相似文献   

20.
Here we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenching in segregated bilayers. The main result is that partition to either gel or liquid-ordered domains increased significantly with increasing length of the labeled acyl chain, probably because the pyrene moiety attached to a long chain perturbs these ordered domains less. Differences in partitioning were also observed between phosphatidylcholine, sphingomyelin, and galactosylceramide, thus indicating that the lipid backbone and headgroup-specific properties are not severely masked by the pyrene moiety. We conclude that pyrene-labeled lipids could be valuable tools when monitoring domain formation in model and biological membranes as well as when assessing the role of membrane domains in lipid trafficking and sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号