首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Cytogenetic damage in cells cultured from normal individuals and patients with ataxia telangiectasia (A-T) and xeroderma pigmentosum (XP) was induced by the chemotherapeutic antibiotics neocarzinostatin (NCS), tallysomycin (TLM) and bleomycin (BLM). Chromosomal breakage was specifically elevated in A-T cells when compared to the other genotypes tested. Similar results were not observed with the clastogens mitomycin C (MMC) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) as all cells responded similarly. All 5 chemical agents caused a marked suppression of de novo DNA synthesis in normal and XP long-term lymphoid cell lines while the A-T cells seemed resistant to this effect of NCS, TLM and BLM.  相似文献   

2.
Several autosomal recessive diseases are associated with apparent DNA repair defects in cell culture. It seemed likely that a defect in excision repair reported for ataxia telangiectasia cells might reflect a lack of apurinic endonuclease activity. We report here normal levels of apurinic endonuclease activity in extracts of cell lines derived from patients with ataxia telangiectasia, xeroderma pigmentosum (complementation group D), Cockayne dwarfism, Fanconi anemia and Bloom syndrome.  相似文献   

3.
Summary Excision repair was studied in normal human and ataxia telangiectasia (AT) cells proficient in repair of UV and its mimetic chemicals, and in xeroderma pigmentosum group C (XP C) cells (deficient in repair of UV and its mimetics), after treatment with several combinations of chemical carcinogens, by the photolysis of bromodeoxyuridine incorporated into parental DNA during repair. Results indicate that repair was additive in AT, and XP C cells treated with N-acetoxy-2-acetylaminofluorene (AAAF) plus ethyl methanesulfonate (EMS) or methyl methanesulfonate (MMS) indicating that there are different rate limiting steps for removal of both types of damage. Data on the combinations of 4-nitroquinoline 1-oxide (4NQO) plus MMS or EMS are difficult to interpret, but they do not indicate inhibition of DNA repair.Research carried out under the auspices of the U.S. Dept. of Energy  相似文献   

4.
Mutants resistant to diphtheria toxin (Dipr) have been selected from a variety of human fibroblast cell strains derived from both normal subjects and individuals with known genetic predisposition to cancer such as xeroderma pigmentosum, Fanconi anemia and Bloom's syndrome. Treatment with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) led to a marked increase in the frequency of Dipr mutants in various cell strains. The increase in the frequency of Dipr mutants occurred in a linear dose-dependent manner in response to MNNG and ethyl methanesulfonate, in one of the cell strains examined. The rate of muation to diphtheria toxin as determined by fluctuation analysis was very similar in various cell strains (1–3 × 10?7 mutations/cell/generation), except for the strain GM1492 (8.8 × 10?7 mutations/cell/generation) which is derived from a Bloom syndrome patient.  相似文献   

5.
《The Journal of cell biology》1984,99(4):1275-1281
The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. These results suggest that there may be a relationship between the sensitivity of xeroderma pigmentosum cells from each complementation group to specific DNA damaging agents and their inability to regulate nucleotide excision repair during cell stimulation.  相似文献   

6.
DDB2 exhibits a high affinity toward UV-damaged DNA, and it is involved in the initial steps of global genome nucleotide excision repair. Mutations in the DDB2 gene cause the genetic complementation group E of xeroderma pigmentosum, an autosomal recessive disease manifested clinically by hypersensitivity to sunlight exposure and an increased predisposition to skin cancer. Here we found that, in human cells, the initiating methionine residue in DDB2 was removed and that the N-terminal alanine could be methylated on its α-amino group in human cells, with trimethylation being the major form. We also demonstrated that the α-N-methylation of DDB2 is catalyzed by the N-terminal RCC1 methyltransferase. In addition, a methylation-defective mutant of DDB2 displayed diminished nuclear localization and was recruited at a reduced efficiency to UV-induced cyclobutane pyrimidine dimer foci. Moreover, loss of this methylation conferred compromised ATM (ataxia telangiectasia mutated) activation, decreased efficiency in cyclobutane pyrimidine dimer repair, and elevated sensitivity of cells toward UV light exposure. Our study provides new knowledge about the posttranslational regulation of DDB2 and expands the biological functions of protein α-N-methylation to DNA repair.  相似文献   

7.
Excision repair of DNA damage was measured by the photolysis of bromodeoxy-uridine incorporated during repair in normal human and xeroderma pigmentosum group C fibroblasts (XP C) treated with a combination of the carcinogens N-acetoxy-2-acetylamino-fluorene (AAAF), and 4-nitroquinoline 1-oxide (4NQO). Repair was additive in normal and XP C cells treated with AAAF plus 4NQO, indicating that there are different rate limiting steps for removal of 4NQO and AAAF lesions.  相似文献   

8.
In order to assess spontaneous mutability and accuracy of DNA joining in ataxia telangiectasia, a disorder with spontaneous chromosome breakage, the replicating shuttle vector plasmid, pZ189, was transfected into SV40 virus-transformed fibroblasts from ataxia telangiectasia patients. The ataxia telangiectasia fibroblasts showed elevated frequency of micronuclei, a measure of chromosome breakage. The spontaneous mutation frequency was normal with circular plasmids passed through the ataxia telangiectasia line. These results were compared to those with transformed fibroblasts from a patient with xeroderma pigmentosum, and from a normal donor. Mutation analysis revealed spontaneous point mutations and deletions in the plasmids with all 3 cell lines, however, insertions or complex mutations were only detectable with the ataxia telangiectasia line. To assess DNA-joining ability, linear plasmids which require joining of the DNA ends by host cell enzymes for survival, were transfected into the cells. We found a 2.4-fold less efficient DNA joining in ataxia telangiectasia fibroblasts (p = 0.04) and a 2.0-fold higher mutation frequency (p less than 0.01) in the recircularized plasmids than with the normal line. Plasmid DNA joining and mutation frequency were normal with the xeroderma pigmentosum fibroblasts. These findings with the ataxia telangiectasia fibroblasts of abnormal types of spontaneous mutations in the transfected plasmid and inefficient, error-prone DNA joining may be related to the increased chromosome breakage in these cells. In contrast, an EB virus-transformed ataxia telangiectasia lymphoblast line with normal frequency of micronuclei showed normal types of spontaneous mutations in the transfected plasmid and normal frequency of DNA joining which was error-prone. These data indicate that mechanisms that produce chromosome breakage in ataxia telangiectasia cells can be reflected in processing of plasmid vectors.  相似文献   

9.
Uracil DNA N-glycosidase, an enzyme which participates in the excision of uracil from DNA, was measured in extracts from fibroblasts lines cultured from normal subjects, from several subjects with the genetic disease xeroderma pigmentosum, and from a subject with ataxia telangiectasia. The cell lines representative of complementation groups A and D of xeroderma pigmentosum and of ataxia telangiectasia had roughly the same level of activity as did the normal cells. On the other hand, cells from two xeroderma pigmentosum variants (XP4BE and XP13BE) had roughly half the normal level of activity, and cells from the heterozygous mother of XP4BE had an intermediate level of activity. In spite of these quantitative differences, no systematic alterations in reaction characteristics, apparent Km for substrate, or purification characteristics were noted for enzyme from any of the lines. Thus a causal relationship, if any, between levels of activity and the disease symptoms is equivocal.  相似文献   

10.
A new mutagenesis assay is described which detects the induction of forward mutations in isolated DNA. The assay utilizes replicative from DNA of the temperate Bacillus subtilis phage φ105 and tests the ability of chemicals to induce lesions which inactivate phage genes involved in lysogen formation. There is a cluster of such genes tightly linked to the φ105 genetic marker Jsus11 which restricts the host range of the phage to cells capable of suppressing sus mutations. In the actual assay chemically treated DNA, from wild-type J+ phage, is added to competent cells which are infected with φ105Jsus11. Wild-type phage, capable of producing plaques on cells which are nonpermissive for φ105Jsus11, are produced by recombination between the added chemically-treated DNA and infecting φ105Jsus11 DNA. If the added DNA also carried mutagenic lesions in any of the genes controlling lysogeny, clear plaque mutants are produced which are readily distinguishable from the turbid plaquing wild-type phage. This report demonstrates the capacity of this marker rescue-based assay to detect as mutagens the following DNA-reactive chemicals: hydroxylamine (HA); N-methyl-N′-nitro-N-nitrosoguanidine (MNNG); chloroacetaldehyde (CAA); propylene oxide (PO) and N-acetyl-N-acetoxy-2-amino-fluorene (AAAF). The effect of using a host cell, defective for excision repair, on the sensitivity with which the assay detected the mutagenic activities of CAA, PO and AAAF also was examined.The new mutagenesis assay offers 2 advantages over several other previously described transformation-based assays: (1) in contrast to assays based on the induction of ribosome-associated drug resistances, the new assay can detect frameshift as well as base-substitution-type mutagens and (2) the mutants generated can be detected at high plating densities. The assay thus may be useful for general mutagen screening especially with highly bactericidal compounds which are not readily tested in other microbial assays.  相似文献   

11.
A genetic link between defects in DNA repair and neurological abnormalities has been well established through studies of inherited disorders such as ataxia telangiectasia and xeroderma pigmentosum. In this review, we present a comprehensive summary of the major types of DNA damage, the molecular pathways that function in their repair, and the connection between defective DNA-repair responses and specific neurological disease. Particular attention is given to describing the nature of the repair defect and its relationship to the manifestation of the associated neurological dysfunction. Finally, the review touches upon the role of oxidative stress, a leading precursor to DNA damage, in the development of certain neurodegenerative pathologies, such as Alzheimer's and Parkinson's.  相似文献   

12.
We have examined the conversion of intermediates of DNA replication in normal human skin fibroblasts and fibroblasts isolated from patients with genetic diseases caused by putative DNA repair defects. Experiments were performed in non-transformed, unchallenged cells using alkaline sucrose sedimentation analysis to demonstrate precursor low molecular weight (LMW) DNA molecules which converted into high molecular weight (HMW) DNA with time. Analyses of conversion of replicative intermediates were conducted in cells from patients with ataxia telangiectasia (AT), Fanconi anemia (FA), Bloom syndrome (BS), Cockayne syndrome (CS) and xeroderma pigmentosum (XP). Our studies show that conversion of replicative intermediates occurs in all cell strains examined. However, XP cells (complementation groups A and E) show evidence of abnormalities in the conversion of LMW replicative intermediates, with the most dramatic alterations shown by cells from complementation group A.  相似文献   

13.
The clone-forming capacity and level of DNA repair was examined on normal human cells and repair-deficient Xeroderma pigmentosum (XP) fibroblasts exposed to various chemical carcinogens and mutagens.The cultured fibroblasts were treated for 90 min with the carcinogenic and mutagenic 4-nitroquinoline 1-oxide (4NQO), 4-hydroxyaminoquinoline 1-oxide (4HAQO), 2-methyl-4-nitroquinoline 1-oxide (2-Me-4NQO), 3-methyl-4-nitropyridine 1-oxide 3-Me-4NPO) and the non-carcinogenic 6-nitroquinoline 1-oxide (6NQO). The response of the cells to the N-oxides was compared to that induced by the mutagen and carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and UV-irradiation.The XP cells showed (1) a reduced level of DNA repair synthesis when exposed to various carcinogenic N-oxides, (2) no unscheduled DNA synthesis following 6NQO and (3) a normal degree of DNA repair synthesis after treatment with MNNG.When the clone-forming capacity was examined the XP cells exhibited (1) a higher increased sensitivity to the various carcinogenic N-oxides, (2) no reduction in the clone formation following 6NQO and (3) a sensitivity virtually comparable to that of normal cells after treatment with MNNG.The results suggest a link between extent of DNA damage, level of DNA repair and degree of sensitivity in human cells exposed to various chemical carcinogens and which induce DNA alterations that cannot be repaired by DNA repair synthesis.  相似文献   

14.
The ability of human fibroblasts to repair bleomycin-damaged DNA was examined in vivo. Repair of the specific lesions caused by bleomycin (BLM) was investigated in normal cell strains as well as those isolated from patients with apparent DNA repair defects. The diseases ataxia telangiectasia (AT), Bloom syndrome (BS), Cockayne syndrome (CS), Fanconi anemia (FA), and xeroderma pigmentosum (XP) were those selected for study. The method used for studying the repair of DNA after BLM exposure was alkaline sucrose gradient centrifugation. After exposure to BLM, a fall in the molecular weight of DNA was observed, and after drug removal the DNA reformed rapidly to high molecular weight. The fall in molecular weight upon exposure to BLM was observed in all cells examined with the exception of some XP strains. Prelabeled cells from some XP complementation groups were found to have a higher percentage of low molecular weight DNA on alkaline gradients than did normal cells. This prelabeled low molecular weight DNA disappeared upon exposure to BLM.  相似文献   

15.
Response of human fibroblasts to low dose rate gamma irradiation   总被引:2,自引:0,他引:2  
Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to gamma radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase in the terminal slope (D0) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury.  相似文献   

16.
《Mutation Research Letters》1995,346(2):107-114
The repair of X-ray-induced DNA damage during G2 cell-cycle phase has been examined in lines of skin fibroblasts from three patients with trichothiodystrophy (TTD), one with apparently normal and two with defective nucleotide excision repair (NER). These responses are compared with those of five lines from clinically normal controls, lines from xeroderma pigmentosum (XP), Cockayne syndrome (CS), Down syndrome (DS), and ataxia telangiectasia (AT) patients. Chromosomal DNA repair was measured as the chromatid aberration frequency (CAF) or total number of chromatid breaks and long gaps per 100 metaphase cells, determined 0.5–1.5 h after X-irradiation (53 rad). Chromatid breaks and gaps (as defined herein) represent unrepaired DNA strand breaks. Only one of the TTD lines, TTD 1BR, showed an abnormally high CAF. This line was shown subsequently to be of a different complementation group, representing a new nucleotide excision repair gene. An abnormally high CAF was also observed, as reported previously, in XP-C, AT and DS but not in CS skin fibroblasts. In addition, cell lines were examined for DNA incision activity by an indirect method in which chromatid aberrations were enumerated with or without ara-C, an inhibitor of repair synthesis, added after X-irradiation. All TTD lines had abnormally low incision activity.  相似文献   

17.
An enzyme that enhances the activity of DNA polymerase I (EC 2.7.7.7) for gamma-irradiated calf thymus DNA was demonstrated in cellular extracts of normal human fibroblasts and lymphoid-cell lines. This enzyme was found to be deficient in all cellular extracts of fibroblasts and lymphoid-cell lines examined from patients with the autosomal recessive disease ataxia telangiectasia. The activity in cellular extracts from normal fibroblasts was removed when heated to 100 degrees C for 2 min or when the assay was performed at 4 degrees C. No significant deficiency in primer-activating enzyme activity was observed in cell-free extracts of lymphoid lines from patients with xeroderma pigmentosum, Huntington's chorea or neurofibromatosis, or from an ataxia telangiectasia heterozygote.  相似文献   

18.
《Mutation Research Letters》1990,243(3):219-224
27-1 is a mutant of Chinese hamster ovary cells (CHO cells) that is hypersenstivie to the toxic effects of ultraviolet light, N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and other monofunctional alkylating agents. We show here that the enhanced MNNG sensitivity of these cells is not due to alterations in the amount of DNA methylation products introduced nor by a defect in the first step of removal of the main alkylation products 7-methylguanine and 3-methyladenine. However, these mutant cells perform more DNA repair synthesis after treatment with MNNG than normal CHO-9 cells. This observation might indicate a possible defect of a ligase involved in sealing DNA repair patches.27-1 cells did not show elevated frequencies of sister-chromatid exchange and chromosomal aberration induced by MNNG. The data show that MNNG-induced cell killing is not necessarily related to increased chromosomal instability.  相似文献   

19.
DNA synthesized in human cells after ultraviolet (UV) irradiation is made in segments of lower molecular weight than in unirradiated cells. Within several hours after irradiation these smaller units are both elongated and joined together. This repair process has been observed in normal human fibroblasts, HeLa cells, and fibroblasts derived from three types of xeroderma pigmentosum patients—uncomplicated with respect to neurological problems, complicated (de Sanctis-Cacchione syndrome), and one with the clinical symptoms of xeroderma pigmentosum but with normal repair replication. The ability of human cells to elongate and to join DNA strands despite the presence of pyrimidine dimers enables them to divide without excising the dimers present in their DNA. It may be this mechanism which enables xeroderma pigmentosum cells to tolerate small doses of UV radiation.  相似文献   

20.
Repair kinetics after saturating doses of ultraviolet radiation (UV), N-acetoxy-2-acetylaminofluorene (AAAF), and combinations of both agents were studied in human fibroblasts proficient and deficient in excision repair, and in Chinese hamster cells (V-79) deficient in excision repair. Three techniques were used: unscheduled DNA synthesis, photolysis of DNA repaired in the presence of bromodeoxyuridine (BrdUrd), and measurements of sites sensitive to a UV-endonuclease. The repair rate appears to be approximately constant during the first few hours after treatment. Later there is a decrease with time; the magnitude of the decrease depends on the cell line. Our data show that the decrease in repair observed in repair-deficient cells treated with combinations of both agents as compared to separate treatments is due neither to the cytotoxic effects of the agents used, nor to a shutoff of the repair system by the high concentrations of AAAF employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号