首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The activation of sorghum NADP-malate dehydrogenase is initiated by thiol/disulfide interchanges with reduced thioredoxin followed by the release of the C-terminal autoinhibitory extension and a structural modification shaping the active site into a high efficiency and high affinity for oxaloacetate conformation. In the present study, the role of the active site arginines in the activation and catalysis was investigated by site-directed mutagenesis and arginyl-specific chemical derivatization using butanedione. Sequence and mass spectrometry analysis were used to identify the chemically modified groups. Taken together, our data reveal the involvement of Arg-134 and Arg-204 in oxaloacetate coordination, suggest an indirect role for Arg-140 in substrate binding and catalysis, and clearly confirm that Arg-87 is implicated in cofactor binding. In contrast with NAD-malate dehydrogenase, no lactate dehydrogenase activity could be promoted by the R134Q mutation. The decreased susceptibility of the activation of the R204K mutant to NADP and its increased sensitivity to the histidine-specific reagent diethylpyrocarbonate indicated that Arg-204 is involved in the locking of the active site. These results are discussed in relation with the recently published NADP-MDH three-dimensional structures and the previously established three-dimensional structures of NAD-malate dehydrogenase and lactate dehydrogenase.  相似文献   

2.
The chloroplastic NADP-malate dehydrogenase is activated by reduction of its N- and C-terminal disulfides by reduced thioredoxin. The activation is inhibited by NADP(+), the oxidized form of the cofactor. Previous studies suggested that the C-terminal disulfide was involved in this process. Recent structural data pointed toward a possible direct interaction between the C terminus of the oxidized enzyme and the cofactor. In the present study, the relationship between the cofactor specificity for catalysis and for inhibition of activation has been investigated by changing the cofactor specificity of the enzyme by substitution of selected residues of the cofactor-binding site. An NAD-specific thiol-regulated MDH was engineered. Its activation was inhibited by NAD(+) but no longer by NADP(+). These results demonstrate that the oxidized cofactor is bound at the same site as the reduced cofactor and support the idea of a direct interaction between the negatively charged C-terminal end of the enzyme and the positively charged nicotinamide ring of the cofactor, in agreement with the structural data. The structural requirements for cofactor specificity are modeled and discussed.  相似文献   

3.
The light-activated NADP-malate dehydrogenase (NADP-MDH) catalyzes the reduction of oxaloacetate to malate in higher plant chloroplasts. This enzyme is regulated in vivo by the ferredoxin-thioredoxin system through redox reactions. NADP-MDH has been photoactivated in vitro in a chloroplast system reconstituted from the pure protein components and thylakoid membranes. Photoactivation was accompanied by the appearance of new thiol groups (followed by [14C]iodoacetate incorporation). 14C-Carboxymethylated NADP-MDH has been purified from the incubation mixture and its amino-terminal sequence analyzed. Two [14C]carboxymethylcysteines were identified at positions 10 and 15 after light activation, while they were not detected in the dark-treated protein. In addition, the analysis of the tryptic digest of light-activated [14C]carboxymethylated NADP-MDH revealed that the radioactive label was mostly incorporated in Cys10 and Cys15, indicating that these 2 residues play a major role in the light activation mechanism. Moreover, an activation model, in which photoreduced thio-redoxin was replaced by the dithiol reductant dithio-threitol, has been developed. When NADP-MDH was activated in this way, the same sulfhydryls were found to be labeled, and alternatively, they did not incorporate any radioactivity when dithiothreitol reduction was performed after carboxymethylation in denaturating conditions. These results indicate that activation (by light or by dithiothreitol) proceeds on each subunit by reduction of a disulfide bridge located at the amino terminus of the enzyme between Cys10 and Cys15.  相似文献   

4.
Phosphite dehydrogenase (PTDH) catalyzes the unusual oxidation of phosphite to phosphate with the concomitant reduction of NAD(+) to NADH. PTDH shares significant amino acid sequence similarity with D-hydroxy acid dehydrogenases (DHs), including strongly conserved catalytic residues His292, Glu266, and Arg237. Site-directed mutagenesis studies corroborate the essential role of His292 as all mutants of this residue were completely inactive. Histidine-selective inactivation studies with diethyl pyrocarbonate provide further evidence regarding the importance of His292. This residue is most likely the active site base that deprotonates the water nucleophile. Kinetic analysis of mutants in which Arg237 was changed to Leu, Lys, His, and Gln revealed that Arg237 is involved in substrate binding. These results agree with the typical role of this residue in D-hydroxy acid DHs. However, Glu266 does not play the typical role of increasing the pK(a) of His292 to enhance substrate binding and catalysis as the Glu266Gln mutant displayed an increased k(cat) and unchanged pH-rate profile compared to those of wild-type PTDH. The role of Glu266 is likely the positioning of His292 and Arg237 with which it forms hydrogen bonds in a homology model. Homology modeling suggests that Lys76 may also be involved in substrate binding, and this postulate is supported by mutagenesis studies. All mutants of Lys76 display reduced activity with large effects on the K(m) for phosphite, and Lys76Cys could be chemically rescued by alkylation with 2-bromoethylamine. Whereas a positively charged residue is absolutely essential for activity at the position of Arg237, Lys76 mutants that lacked a positively charged side chain still had activity, indicating that it is less important for binding and catalysis. These results highlight the versatility of nature's catalytic scaffolds, as a common framework with modest changes allows PTDH to catalyze its unusual nucleophilic displacement reaction and d-hydroxy acid DHs to oxidize alcohols to ketones.  相似文献   

5.
The role of the internal Cys-207 of sorghum NADP-malate dehydrogenase (NADP-MDH) in the activation of the enzyme has been investigated through the examination of the ability of this residue to form mixed disulphides with thioredoxin mutated at either of its two active-site cysteines. The h-type Chlamydomonas thioredoxin was used, because it has no additional cysteines in the primary sequence besides the active-site cysteines. Both thioredoxin mutants proved equally efficient in forming mixed disulphides with an NADP-MDH devoid of its N-terminal bridge either by truncation, or by mutation of its N-terminal cysteines. They were poorly efficient with the more compact WT oxidised NADP-MDH. Upon mutation of Cys-207, no mixed disulphide could be formed, showing that this cysteine is the only one, among the four internal cysteines, which can form mixed disulphides with thioredoxin. These experiments confirm that the opening of the N-terminal disulphide loosens the interaction between subunits, making Cys-207, located at the dimer contact area, more accessible.  相似文献   

6.
A mutant of Bacillus stearothermophilus D-glyceraldehyde-3-phosphate dehydrogenase, Ser148----Ala, was produced by oligonucleotide-directed mutagenesis. The study of the catalytic properties of this mutant has shown that this mutation significantly affects the Michaelis constant of inorganic phosphate and to a lesser extent that of 1,3-diphosphoglycerate and D-glyceraldehyde-3-phosphate. This result is consistent with model-building studies which show that, for the phosphorylation step of catalysis, inorganic phosphate must bind to the anion recognition site designated Pi with the C(3) phosphate of the acyl-enzyme intermediate in the alternative anion site Ps. Studies of the enantiomeric specificity using D- and L-glyceraldehyde as substrates show that the hydroxyl group of Ser148, combined with the presence of the C(3) phosphate of the substrate, enhances stereospecificity as well as catalysis. However, the stereospecific effect cannot be a consequence of the direct interaction of Ser148 with the C(2)-hydroxyl of the substrate. The changed Km for glyceraldehyde-3-phosphate suggests that the initial step of hemithioacetal formation may take place with its C(3) phosphate bound in the Pi site. This supports the molecular mechanism proposed by Moody (1984). Therefore, catalysis could be enhanced through interactions of the serine hydroxyl group not only with inorganic phosphate but also with the C(3) phosphate of glyceraldehyde-3-phosphate.  相似文献   

7.
We have mutated Arg-25, Asp-59 and Arg-211 to alanine; and Asp-59 also to methionine, in fructose 6-phosphate-1-kinase from B. stearothermophilus (designated as RA25, DA59, RA211 and DM59 respectively). All four mutants did not change the affinity of the enzyme for ATP. RA25 has half the affinity for fructose 6-phosphate and exhibits sigmoidicity with respect to this substrate (Hill # = 2.0). DA59 has the same affinity for phosphoenolpyruvate (PEP) as the wild type whereas DM59 has 3-fold the affinity for this modulator and the inhibition is reversed by GDP. RA25 and RA211 are 100-fold less sensitive to PEP inhibition which is not relieved by GDP. It is concluded that Arg-25 and Arg-211, but not Asp-59, are involved in the direct binding of PEP and GDP.  相似文献   

8.
Site-directed mutagenesis of Bacillus subtilis N7 alpha-amylase has been performed to evaluate the roles of the active site residues in catalysis and to prepare an inactive catalytic-site mutant that can form a stable complex with natural substrates. Mutation of Asp-176, Glu-208, and Asp-269 to their amide forms resulted in over a 15,000-fold reduction of its specific activity, but all the mutants retained considerable substrate-binding abilities as estimated by gel electrophoresis in the presence of soluble starch. Conversion of His-180 to Asn resulted in a 20-fold reduction of kcat with a 5-fold increase in Km for a maltopentaose derivative. The relative affinities for acarbose vs. maltopentaose were also compared between the mutants and wild-type enzyme. The results are consistent with the roles previously proposed in Taka-amylase A and porcine pancreatic alpha-amylase based on their X-ray crystallographic analyses, although different pairs had been assigned as catalytic residues for each enzyme. Analysis of the residual activity of the catalytic-site mutants by gel electrophoresis has suggested that it derived from the wild-type enzyme contaminating the mutant preparations, which could be removed by use of an acarbose affinity column; thus, these mutants are completely devoid of activity. The affinity-purified mutant proteins should be useful for elucidating the complete picture of the interaction of this enzyme with starch.  相似文献   

9.
Cysteine 319 in the large subunit of Klebsiella aerogenes urease was identified as an essential catalytic residue based on chemical modification studies (Todd, M.J., and Hausinger, R.P. (1991) J. Biol. Chem. 266, 24327-24331). Through site-directed mutagenesis, this cysteine has been changed independently to alanine, serine, aspartate, and tyrosine. None of these mutations (C319A, C319S, C319D, and C319Y, respectively) affected the size or level of synthesis of the urease subunits as monitored by polyacrylamide gel electrophoresis. The wild type enzyme and each of the mutant proteins was purified and their properties were compared. The C319Y protein possessed no detectable activity, while activity was reduced in C319A, C319S, and C319D to 48, 4.5, and 0.03% of wild type levels under normal assay conditions. All of the active mutants had a small increase in Km when compared to the wild type value. The active mutants displayed a greatly reduced sensitivity to inactivation by iodoacetamide in comparison to the wild type enzyme, confirming our previous assignment of the essential cysteine to this residue based on active site peptide mapping. In contrast to the wild type enzyme, inactivation of the mutant proteins was not affected by the presence of the competitive inhibitor phosphate, suggesting that the remaining slow rate of iodoacetamide inactivation is due to modification away from the active site. The pH dependence of urease activity was substantially altered in the active mutants with C319S and C319D showing a pH optimum near 5.2, and C319A near 6.7, compared to the pH 7.75 optimum of wild type urease. These data are consistent with Cys-319 facilitating catalysis at neutral and basic pH values by participating as a general acid.  相似文献   

10.
Some key chloroplast enzymes are activated by light via a ferredoxin-thioredoxin reduction system which reduces disulfide bridges in the enzymes. We describe for the first time the structural basis for the redox activation of a chloroplast enzyme, the NADP-dependent malate dehydrogenase (MDH) from Sorghum vulgare whose structure has been determined and refined at 2.4 A resolution. In addition to the normal structural components of MDHs, the enzyme exhibits extensions at both the N- and C-termini, each of which contains a regulatory disulfide bridge which must be reduced for activation. The N-terminal disulfide motif is inserted in a cleft between the two subunits of the dimer, thereby locking the domains in each subunit. The C-terminal disulfide keeps the C-terminal residues tight to the enzyme surface and blocks access to the active site. Reduction of the N-terminal disulfide would release the stopper between the domains and give the enzyme the necessary flexibility. Simultaneous reduction of the C-terminal disulfide would free the C-terminal residues from binding to the enzyme and make the active site accessible.  相似文献   

11.
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.  相似文献   

12.
Trypanosoma brucei possesses a non-cytochrome, salicylhydroxamic acid (SHAM)-sensitive ubiquinol:oxygen oxidoreductase known as trypanosome alternative oxidase (TAO). TAO and similar SHAM-sensitive alternative oxidases (AOXs) contain 2-3 conserved diiron-binding motifs (EXXH). Site-directed mutagenesis of residues H165A, E214A, E266A, and H269L within the conserved EXXH motif abolished the ability of TAO to complement the heme-deficient Escherichia coli strain GE1387. These mutations also reduced the growth of this E. coli auxotroph to about 85% of the control cells containing wild type TAO. In contrast, mutation of residues outside the EXXH motifs, e.g. V205A, L243A, C261A, and V271A, had little effect on complementation, and the reduction in the cell growth was about 5-10%. Mutations of the putative iron-binding residues within the EXXH motifs of TAO abolished the ability to confer SHAM-sensitive respiration to E. coli heme mutant, whereas mutations of the non-conserved/non-iron binding residues resulted in 20-30% reduction of SHAM-sensitive respiration of the E. coli auxotroph. Immunoblot analysis of the total cellular protein of transformed E. coli revealed that the expression level of mutated and wild type TAO (35 kDa) remained unaltered. Mutation at C261A produced a truncated but functional protein of 28 kDa. The addition of ortho-phenanthroline to the growth medium produces a non-functional TAO. The effect of ortho-phenanthroline on the activity of TAO was completely alleviated by the addition of iron in the medium, which suggests that iron is needed for the activity of TAO. This work demonstrates that His-165, Glu-214, Glu-266, and His-269 and the presence of iron are essential for the activity of TAO.  相似文献   

13.
A new vector for the expression of phosphofructokinase (pfk-1) was constructed with pEMBL, which allows reliable, inducible, high-expression, and facile mutagenesis of the gene. Two mutants in the effector site of the enzyme were produced by site-specific mutagenesis of residue Tyr-55 to assess the role of its side chain in binding an allosteric inhibitor, phosphoenolpyruvate (PEP), and an activator, guanosine 5'-diphosphate (GDP): Tyr-55----Phe-55 and Try-55----Gly-55. The dissociation constant of PEP from the T state is unaffected by the mutations. Mutation of Tyr-55----Phe-55 only slightly increases the dissociation constant of GDP from the R state, indicating a minimal involvement of the hydroxyl group in binding. A 5.5-fold increase in the dissociation constant of GDP on the mutation of Tyr-55----Gly-55 suggests a small hydrophobic interaction of the aromatic ring of the tyrosine residue with guanine of GDP.  相似文献   

14.
Blood coagulation factor XIIIa is a calcium-dependent enzyme that covalently ligates fibrin molecules during blood coagulation. X-ray crystallography studies identified a major calcium-binding site involving Asp(438), Ala(457), Glu(485), and Glu(490). We mutated two glutamic acid residues (Glu(485) and Glu(490)) and three aspartic acid residues (Asp(472), Asp(476), and Asp(479)) that are in close proximity. Alanine substitution mutants of these residues were constructed, expressed, and purified from Escherichia coli. The K(act) values for calcium ions increased by 3-, 8-, and 21-fold for E485A, E490A, and E485A,E490A, respectively. In addition, susceptibility to proteolysis was increased by 4-, 9-, and 10-fold for E485A, E490A, and E485A,E490A, respectively. Aspartic acids 472, 476, and 479 are not involved directly in calcium binding since the K(act) values were not changed by mutagenesis. However, Asp(476) and Asp(479) are involved in regulating the conformation for exposure of the secondary thrombin cleavage site. This study provides biochemical evidence that Glu(485) and Glu(490) are Ca(2+)-binding ligands that regulate catalysis. The binding of calcium ion to this site protects the molecule from proteolysis. Furthermore, Asp(476) and Asp(479) play a role in modulating calcium-dependent conformational changes that cause factor XIIIa to switch from a protease-sensitive to a protease-resistant molecule.  相似文献   

15.
Cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium is an extracellular 90-kDa hemoflavoenzyme, organized into an N-terminal heme domain and a C-terminal flavin domain. The amino acid residues Met65 and His114 or His163 were suggested to be heme iron ligands. Mutations of these residues were made and mutant proteins were characterized. H114A mutant cultures produce a stable hemoflavoenzyme with spectral and kinetic characteristics similar to those of wild-type CDH. The M65A and H163A transformants secrete a 90-kDa hemoflavoenzyme, which oxidizes cellobiose in the presence of 2,6-dichlorophenol-indophenol (DCPIP), but is unable to reduce cytochrome c. The heme domains of the M65A and H163A CDH variants are, however, unstable and susceptible to degradation, both yielding a 70-kDa cellobiose-oxidizing flavoenzyme. The spectral and kinetic characteristics of these truncated variants suggest that they contain only their respective flavin domains. The yield of the 90-kDa proteins was low and the proteins could not be purified to homogeneity; however, absorption spectra indicate that the 90-kDa proteins do contain the heme domain. Like the truncated flavoenzymes, the 90-kDa variants reduce DCPIP but are unable to transfer electrons to cytochrome c, in contrast to wild-type CDH. These findings suggest that H163 and M65 are the axial heme ligands and that both ligands are required for the reactivity and structural integrity of the heme domain.  相似文献   

16.
Chloroplast NADP-dependent malate dehydrogenase (NADP-MDH, EC 1.1.1.82) is inactive in the dark and activated in the light via a reduction of specific disulfides by thiol-disulfide interchange with thioredoxin, reduced by the photosynthetic electron transfer. Compared to the constitutively active NAD-dependent forms, NADP-MDH exhibits two regulatory disulfides per subunit, one located in an N-terminal extension and the other in a C-terminal extension. Convergent information gathered from biochemical, site-directed mutagenesis and structural approaches allowed to solve almost completely the activation mechanism. In the oxidized enzyme, the C-terminal extension is pulled back by the disulfide bridge toward the active-site cleft where the penultimate C-terminal glutamate interacts with one of the arginines involved in substrate binding, thus acting as an internal inhibitor obstructing the access of oxaloacetate. The N-terminal extensions are located at the subunit interface area and rigidify the overall structure of the dimer. Their reduction by reduced thioredoxin triggers a conformational change of the active site towards high-activity conformation, whereas the reduction of the C-terminal bridge expells the C-terminal end from the active site, thus opening the way for the substrate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
S A Berger  P R Evans 《Biochemistry》1992,31(38):9237-9242
Six active site mutants of Escherichia coli phosphofructokinase have been constructed and characterized using steady-state kinetics. All but one of the mutants (ES222) have significantly lower maximal activity, implicating these residues in the catalytic process. Replacement of Asp127, the key catalytic residue in the forward reaction with Glu, results in an enzyme with wild-type cooperative and allosteric behavior but severely decreased Fru6P binding. Replacement of the same residue with Tyr abolishes cooperativity while retaining sensitivity to allosteric inhibition and activation. Thus, this mutant has uncoupled homotropic from heterotropic allostery. Mutation of Asp103 to Ala results in an enzyme which retains wild-type Fru6P-binding characteristics with reduced activity. GDP, which allosterically activates the wild-type enzyme, acts as a mixed inhibitor for this mutant. Mutation of Thr125 to Ala and Asp129 to Ser produces mutants with impaired Fru6P binding and decreased cooperativity. In the presence of the activator GDP, both these mutants display apparent negative cooperativity. In addition, ATP binding is now allosterically altered by GDP. These results extend the number of active site residues known to participate in the catalytic process and help to define the mechanisms behind catalysis and homotropic and heterotropic allostery.  相似文献   

18.
Polyphenol oxidases (PPOs) catalyze the oxidation of ortho-diphenols to the corresponding quinones (EC 1.10.3.1). In plants PPOs appear in gene families, and the corresponding isoenzymes are located to the thylakoid lumen of chloroplasts. Although plant PPOs are often discussed with regard to their role in defense reactions, a common physiological function has not yet been defined. We analyzed a tetrameric PPO isoenzyme (PPO-6) from dandelion (Taraxacum officinale) heterologously expressed in Escherichia coli, and found it to display cooperativity in catalysis, a phenomenon that has rarely been shown for plant PPOs previously. The identification of a surface-exposed cysteine (197) through molecular modeling followed by site-directed mutagenesis proved this amino acid residue to stabilize the tetramer via a disulfide linkage. The C197S-mutein still forms a tetrameric structure but shows impaired enzymatic efficiency and cooperativity and a reduction in stability. These findings indicate that oligomerization may be a physiological requirement for PPO-6 stability and function in vivo and raise new questions regarding distinct functions for specific PPO isoenzymes in plants.  相似文献   

19.
Chitinase is an enzyme used by insects to degrade the structural polysaccharide, chitin, during the molting process. Tryptophan 145 (W145) of Manduca sexta (tobacco hornworm) chitinase is a highly conserved residue found within a second conserved region of family 18 chitinases. It is located between aspartate 144 (D144) and glutamate 146 (E146), which are putative catalytic residues. The role of the active site residue, W145, in M. sexta chitinase catalysis was investigated by site-directed mutagenesis. W145 was mutated to phenylalanine (F), tyrosine (Y), isoleucine (I), histidine (H), and glycine (G). Wild-type and mutant forms of M. sexta chitinases were expressed in a baculovirus-insect cell line system. The chitinases secreted into the medium were purified and characterized by analyzing their catalytic activity and substrate or inhibitor binding properties. The wild-type chitinase was most active in the alkaline pH range. Several of the mutations resulted in a narrowing of the range of pH over which the enzyme hydrolyzed the polymeric substrate, CM-Chitin-RBV, predominantly on the alkaline side of the pH optimum curve. The range was reduced by about 1 pH unit for W145I and W145Y and by about 2 units for W145H and W145F. The W145G mutation was inactive. Therefore, the hydrophobicity of W145 appears to be critical for maintaining an abnormal pKa of a catalytic residue, which extends the activity further into the alkaline range. All of the mutant enzymes bound to chitin, suggesting that W145 was not essential for binding to chitin. However, the small difference in Km's of mutated enzymes compared to Km values of the wild-type chitinase towards both the oligomeric and polymeric substrates suggested that W145 is not essential for substrate binding but probably influences the ionization of a catalytically important group(s). The variations in kcat's among the mutated enzymes and the IC50 for the transition state inhibitor analog, allosamidin, indicate that W145 also influences formation of the transition state during catalysis.  相似文献   

20.
Sequence alignment shows that residue Arg 284 (according to the numbering of the residues in formate dehydrogenase, FDH, from the methylotrophic bacterium Pseudomonas sp. 101) is conserved in NAD-dependent FDHs and D-specific 2-hydroxyacid dehydrogenases. Mutation of Arg 284 to glutamine and alanine results in a change of the catalytic, thermodynamic and spectral properties of FDH. In comparison to wild-type, the affinity of the mutants for the substrate (K(formate)m) or the transition state analogue (K(azide)i) decreases and correlates with the ability of the side chain of residue 284 to form H-bonds. In contrast, the affinity for the coenzyme (K(NAD)d or K(NAD)m) is either not affected or increases and correlates inversely with the partial positive charge of the side chain. The temperature dependence of circular dichroism (CD) spectra of the wild-type FDH and its Ala mutant has been studied over the 5-90 degrees C temperature range. Both proteins reveal regions of enhanced conformational mobility at the predenaturing temperatures (40-55 degrees C) associated with a change of enzyme kinetic parameters and a co-operative transition around 55-70 degrees C which is followed by the loss of enzyme activity. CD spectra of the wild-type and mutant proteins were deconvoluted and contributions from various types of secondary structure estimated. It is shown that the co-operative transition at 55-70 degrees C in the FDH protein globule is triggered by a loss of alpha-helical secondary structure. The results confirm the conclusion, from the crystal structures, that Arg 284 is directly involved in substrate binding. In addition this residue seems to exert a major structural role by supporting the catalytic conformation of the enzyme active centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号