首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Genes coding for sporamin and β-amylase of sweet potato are inducible not only by high levels of metabolizable sugars, such as sucrose, but also by a low concentration of polygalacturonic acid (PGA). Calmodulin inhibitors and EGTA inhibited both the PGA-inducible and the sucrose-inducible accumulation of mRNAs for sporamin and β-amylase in sweet potato. Calmodulin inhibitors, EGTA and La3+, also inhibited the sucrose-inducible expression, in leaves of transgenic tobacco, of a fusion gene, β-Amy:GUS, which consists of the promoter of the β-amylase gene and the coding sequence for β-glucuronidase. The sucrose-inducible expression of the β-Amy:GUS fusion gene was also inhibited by two inhibitors of Ca2+ channels, diltiazem and nicardipine. These results suggest that the sugar-inducible expression of genes for sporamin and β-amylase involves, at least in part, Ca2+-mediated signalling, and that the cytosolic free Ca2+ may mediate cross-talk between signals related to carbohydrate metabolism and other stimuli. Treatment of coelenterazine-loaded leaf discs of tobacco expressing a Ca2+-binding photoprotein, aequorin, with 0.2 M sucrose for 24 h significantly reduced the level of luminescence that could be induced by cold shock, as compared to cold shock-induced luminescence in coelenterazine-loaded leaf discs treated with water. Repression of cold shock-induced luminescence was due to the conversion of holoaequorin to apoaequorin during the treatment with sucrose. Treatment of coelenterazine-loaded leaf discs with a 0.2 M solution of glucose or fructose, but not of mannitol or sorbitol, also reduced the cold shock-induced luminescence. It is suggested that non-synchronous increases in cytosolic level of free Ca2+ occur in leaf discs during treatment with high levels of metabolizable sugars.  相似文献   

3.
The plasma membrane fraction from leaves of tobacco containsa 54-kDa protein with autophosphorylation activity, and thelevel of this protein increases after feeding of leaves withsucrose [Ohto and Nakamura (1995) Plant Physiol. 109: 973].The 54-kDa autophosphorylation protein could not be releasedfrom the plasma membrane by treatment with salt or alkali butcould be efficiently solubi-lized by 1% sodium deoxycholate(NaDOC). Ion-exchange chromatography of the NaDOC-solubilizedproteins in the presence of octylglucoside separated the 54-kDaautophosphorylation protein into three peaks. The autophosphorylationactivity of the 54-kDa protein in peaks I and II increased afterfeeding of leaves with sucrose. The 54-kDa protein in the peakII fraction was enriched about 125-fold starting from the microsomalmembrane fraction. The 54-kDa protein in this fraction phosphorylatedhistone HIS in a calcium-dependent manner and cross-reactedwith an antibody against a calcium-dependent protein kinase(CDPK) of Arabidopsis thaliana. These results suggest that the54-kDa protein in the peak II fraction is a novel isoform ofCDPK which is associated with the plasma membrane and is inducibleby sucrose. (Received September 29, 1997; Accepted September 1, 1998)  相似文献   

4.
Sporamin and β-amylase are two major proteins of tuberous storage root of sweet potato (Ipomoea batatas) and their accumulation can be induced concomitantly with the accumulation of starch in leaves and petioles by sucrose (K Nakamura, M Ohto, N Yoshida, K Nakamura [1991] Plant Physiol 96: 902-909). Although mechanical wounding of leaves of sweet potato only occasionally induced the expression of sporamin and β-amylase genes, their expression could be reproducibly induced in leaf-petiole cuttings when these explants were dipped in a solution of polygalacturonic acid or chitosan at their cut edges. Polygalacturonic acid seemed to induce expression of the same genes coding for sporamin and β-amylase that are induced by sucrose. Because polygalacturonic acid and chitosan are known to mediate the induction of wound-inducible defense reactions, these results raise an interesting possibility that β-amylase, in addition to sporamin, may have some role in the defense reaction. Expression of sporamin and β-amylase genes could also be induced by abscisic acid, and this induction by abscisic acid, as well as induction by polygalacturonic acid or sucrose, was repressed by gibberellic acid. By contrast, methyl jasmonate did not cause the significant induction of either sporamin or β-amylase mRNAs. Induction of expression of sporamin and β-amylase genes by polygalacturonic acid or sucrose was inhibited by cycloheximide, suggesting that de novo synthesis of proteins is required for both of the induction processes.  相似文献   

5.
Two protein kinase activities were found in plasma membrane-enriched preparations from red beet ( Beta vulgarix L.). The kinases in these preparations produced the phosphorylation of several membrane polypeptides. These kinases also phosphorylated histone III-S and casein. The activities of two different kinases could be distinguished: one was half-maximally stimulated by 1 μ M free Ca2+ phosphorylated histone III-S better than casein, showed half-maximal activity at an ATP concentration of 0.071 m M . had an optimum pH of 7, and was poorly inhibited by GTP, CTP or UTP. Another, much lower, kinase activity that phosphorylated casein was also observed; it was Ca2+ independent, showed half-maximal activity at ATP concentrations of 0.017 and 0.287 m M , exhibited a broad pH optimum about pH 7 and was inhibited by GTP, CTP, UTP or GDP to a greater extent than the calcium-stimulated activity. When plasma membrane proteins were solubilized with lysophosphatidyicholine and treated with [γ-32P]ATP at several dilutions, a 125-kDa polypeptide was autophosphorylated in the absence of Ca2+, while 77-, 71- and 65-kDa polypeptides were autophosphorylated in its presence. Autophosphorylation in gels after electrophoresis showed a Ca2+-stimulated phosphoprotein band at 64 kDa.  相似文献   

6.
Enyedi AJ  Raskin I 《Plant physiology》1993,101(4):1375-1380
Salicylic acid (SA) is a putative signal that activates plant resistance to pathogens. SA levels increase systemically following the hypersensitive response produced by tobacco mosaic virus (TMV) inoculation of tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. The SA increase in the inoculated leaf coincided with the appearance of a [beta]-glucosidase-hydrolyzable SA conjugate identified as [beta]-O-D-glucosylsalicylic acid (GSA). SA and GSA accumulation in the TMV-inoculated leaf paralleled the increase in the activity of a UDP-glucose:salicylic acid 3-O-glucosyltransferase (EC 2.4.1.35) ([beta]-GTase) capable of converting SA to GSA. Healthy tissues had constitutive [beta]-GTase activity of 0.076 milliunits g-1 fresh weight. This activity started to increase 48 h after TMV inoculation, reaching its maximum (6.7-fold induction over the basal levels) 72 h after TMV inoculation. No significant GSA or elevated [beta]-Gtase activity could be detected in the healthy leaf immediately above the TMV-inoculated leaf. The effect of TMV inoculation on the [beta]-GTase and GSA accumulation could be duplicated by infiltrating tobacco leaf discs with SA at the levels naturally produced in TMV-inoculated leaves (2.7-27.0 [mu]g g-1 fresh weight). Pretreatment of leaf discs with the protein synthesis inhibitor cycloheximide inhibited the induction of [beta]-GTase by SA and prevented the formation of GSA. Of 12 analogs of SA tested, only 2,6-dihydroxybenzoic acid induced [beta]-GTase activity.  相似文献   

7.
The levels of beta-amylase activity and of the mRNA for beta-amylase in rosette leaves of Arabidopsis thaliana (L.) Heynh. increased significantly, with the concomitant accumulation of starch, when whole plants or excised mature leaves were supplied with sucrose. A supply of glucose or fructose, but not of mannitol or sorbitol, to plants also induced the expression of the gene for beta-amylase, and the induction occurred not only in rosette leaves but also in roots, stems, and bracts. These results suggest that the gene for beta-amylase of Arabidopsis is subject to regulation by a carbohydrate metabolic signal, and expression of the gene in various tissues may be regulated by the carbon partitioning and sink-source interactions in the whole plant. The sugar-inducible expression of the gene in Arabidopsis was severely repressed in the absence of light. The sugar-inducible expression in the light was not inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea or by chloramphenicol, but it was inhibited by cycloheximide. These results suggest that a light-induced signal and de novo synthesis of proteins in the cytoplasm are involved in the regulation. A fusion gene composed of the 5' upstream region of the gene for beta-amylase from Arabidopsis and the coding sequence of beta-glucuronidase showed the sugar-inducible expression in a light-dependent manner in rosette leaves of transgenic Arabidopsis.  相似文献   

8.
Purified alkaline phosphatase and plasma membranes from human liver were shown to dephosphorylate phosphohistones and plasma membrane phosphoproteins. The protein phosphatase activity of the liver plasma membranes was inhibited by levamisole, a specific inhibitor of alkaline phosphatase, and by phenyl phosphonate and orthovanadate, but was relatively insensitive to fluoride (50 mM). Endogenous membrane protein phosphatase activity was optimal at pH 8.0, compared to pH 7.8 for purified liver alkaline phosphatase. Plasma membranes also exhibited protein kinase activity using exogenous histone or endogenous membrane proteins (autophosphorylation) as substrates; this activity was cAMP-dependent. Autophosphorylation of plasma membrane proteins was apparently enhanced by phenyl phosphonate, levamisole, or orthovanadate. The dephosphorylation of phosphohistones by protein phosphatase 1 was not inhibited by levamisole but was inhibited by fluoride. Inhibition of endogenous protein phosphatase activity by orthovanadate during autophosphorylation of plasma membranes could be reversed by complexation of the inhibitor with (R)-(-)-epinephrine, and the dephosphorylation that followed was levamisole-sensitive. Neither plasma membranes nor purified liver alkaline phosphatase dephosphorylated glycogen phosphorylase a. These results suggest that the increased [32P]phosphate incorporation by endogenous protein kinases into the membrane proteins is due to inhibition of alkaline phosphatase and that the major protein phosphatase of these plasma membranes is alkaline phosphatase.  相似文献   

9.
We have used isolated spinach (Spinacea oleracea L.) thylakoid membranes to investigate the possible cryoprotective properties of class I [beta]-1,3-glucanase (1,3-[beta]-D-glucan 3-glucanohydrolase; EC 3.2.1.39) and chitinase. Class I [beta]-1,3-glucanase that was purified from tobacco (Nicotiana tabacum L.) protected thylakoids against freeze-thaw injury in our in vitro assays, whereas class I chitinase from tobacco had no effect under the same conditions. The [beta]-1,3-glucanase acted by reducing the influx of solutes into the membrane vesicles during freezing and thereby reduced osmotic stress and vesicle rupture during thawing. Western blots probed with antibodies directed against tobacco class I [beta]-1,3-glucanase showed that in spinach and cabbage (Brassica oleracea L.) leaves an isoform of 41 kD was accumulated during frost hardening under natural conditions.  相似文献   

10.
Blue light-dependent proton extrusion in guard cell protoplastsfrom Vicia faba and light-dependent stomatal opening in theepidermis of Commelina benghalensis are inhibited by the calmodulin(CaM) antagonist, N-(6-aminohexyl)-5-chloro-l-naphthalenesulfononamide(W-7) and the myosin light chain kinase (MLCK) inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-lH-hexahydro-1,4-diazepine (ML-7) [Shimazaki, K., Kinoshita, T.and Nishimura, M. (1992) Plant Physiol. 99: 1416]. We now suggestthat the inhibition occurs in the blue light signaling pathwaywithout affecting the proton pump. Addition of fusicoccin (FC),an activator of H+-ATPase, to the protoplasts and the epidermiswhose blue light-dependent proton extrusion and light-dependentstomatal opening had been inhibited by W-7 and ML-7, inducedboth proton extrusion and stomatal opening, respectively. Bluelight-dependent proton extrusion was inhibited by K-252a, awide-range inhibitor of protein kinases, and KT5926, a selectiveinhibitor of MLCK. FC induced proton extrusion in the presenceof K-252a and KT5926. In contrast, phenylmercuric acetate (PMA),carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and N, N'-dicyclohexylcarbodiimide(DCCD) inhibited both the proton extrusion and stomatal opening,but FC did not induce the responses. These results suggest thatW-7, ML-7, K-252a and KT5926 inhibit the signal transductionprocess by which the perception of blue light is transducedinto activation of the proton pump in guard cells, and thatMLCK or MLCK-like protein is involved in the blue light responseof stomata. The possibility that calcium-dependent, calmodulinindependent protein kinase [Harper, J.F. et al. (1991) Science252: 951] functions rather than MLCK in the blue light responseof stomata should be noted, however. (Received July 23, 1993; Accepted September 30, 1993)  相似文献   

11.
A new starch-degrading enzyme activity is induced by storage of potato (Solanum tuberosum L.) tubers at low temperatures (L. Hill, R. Reimholz, R. Schroder, T.H. Nielsen, M. Stitt [1996] Plant Cell Environ 14: 1223-1237). The cold-induced activity was separated from other amylolytic activities in zymograms based on iodine staining of polyacrylamide gels containing amylopectin. A similar band of activity was detected at normal growth temperatures in leaves, stems, and growing tubers but was present only at low activity in warm-stored tubers. The cold-induced enzyme was separated by ion-exchange chromatography from other amylolytic activities. It has a broad neutral pH optimum. Characterization of its hydrolytic activity with different substrates showed that the cold-induced activity is a [beta]-amylase present at low activity in tubers stored at 20[deg]C and induced progressively when temperatures are decreased to 5 and 3[deg]C. The first clear induction of [beta]-amylase activity was observed within 3 d of storage at 3[deg]C, and the activity increased 4- to 5-fold within 10 d. The possible involvement of the cold-induced [beta]-amylase in sugar accumulation during cold storage is discussed.  相似文献   

12.
13.
14.
Interveinal strips (10 x 1.5 mm) excised from growing tobacco (Nicotiana tabacum L. cv Xanthi) leaves curled >300[deg] when incubated for 20 h in 5 to 500 [mu]M [alpha]-naphthalene acetic acid or 50 to 500 [mu]M indole-3-acetic acid. Epinasty was not induced without auxin or by the auxin analog [beta]-naphthalene acetic acid, and less substantial epinasty was induced in midrib and vein segments. Auxin treatment increased the length of both surfaces of strips. Curvature resulted from greater growth on the adaxial side. Epinastic sensitivity of strips to auxin appeared first in the distal third of young leaves (blade 4.5-6.0 cm). In older leaves (8-10 and 12-14 cm), the interveinal tissues throughout were sensitive, whereas in leaves 16- to 18-cm long, sensitivity was reduced in the distal two-thirds. Amino-oxyacetic acid (AOA), an ethylene biosynthesis inhibitor, partially inhibited epinasty at 100 [mu]M. However, a poor correlation between inhibition of ethylene biosynthesis by AOA and its inhibition of curvature and the inability of ethylene to produce epinasty or to reverse the effects of AOA suggests that auxin-induced epinasty is not caused by auxin-induced ethylene production.  相似文献   

15.
16.
Subcellular localization of the starch-degrading enzymes in Vicia faba leaves was achieved by an electrophoretic transfer method through a starch-containing gel (SCG) and enzyme activity measurements. Total amylolytic and phosphorolytic activities were found predominantly in the extrachloroplastic fraction, whereas the debranching enzymes showed homogenous distribution between stromal and extrachloroplastic fractions. Staining of end products in the SCG revealed two isoforms of [alpha]-amylase (EC 3.2.1.1) and very low [beta]-amylase activity (EC 3.2.1.2) in the chloroplast preparation, whereas [alpha]- and [beta]-amylase exhibited higher activities in the crude extract. However, it is unclear whether the low [alpha]- and [beta]-amylase activities associated with the chloroplast are contamination or activities that are integrally associated with the chloroplast. Study of the diurnal fluctuation of the starch content and of the amylase activities under a 9-h/15-h photoperiod showed a 2-fold increase of the total amylolytic activity in the chloroplasts concurrent with the starch degradation in the dark. No fluctuation was detectable for the extrachloroplastic enzymes. The possible roles and function of the chloroplastic and extrachloroplastic hydrolytic enzymes are discussed.  相似文献   

17.
Moriyasu Y  Ohsumi Y 《Plant physiology》1996,111(4):1233-1241
The response of tobacco (Nicotiana tabacum) suspension-cultured cells (BY-2) to nutrient starvation was investigated. When the cells that were grown in Murashige-Skoog medium containing 3% (w/v) sucrose were transferred to the same medium without sucrose, 30 to 45% of the intracellular proteins were degraded in 2 d. An analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that proteins were degraded nonselectively. With the same treatment, protease activity in the cell, which was measured at pH 5.0 using fluorescein thiocarbamoyl-casein as a substrate, increased 3- to 7-fold after 1 d. When the cysteine protease inhibitor (2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methyl-butane (10 [mu]M) was present in the starvation medium, both the protein degradation and the increase in the protease activity were effectively inhibited. Light microscopy analysis showed that many small spherical bodies accumulated in the perinuclear region of the cytosol 8 h after the start of the inhibitor treatment. These bodies were shown to be membrane-bound vesicles of 1 to 6 [mu]m in diameter that contained several particles. Quinacrine stained these vesicles and the central vacuole; thus, both organelles are acidic compartments. Cytochemical enzyme analysis using 1-naphthylphosphate and [beta]-glycerophosphate as substrates showed that these vesicles contained an acid phosphatase(s). We suggest that these vesicles contribute to cellular protein degradation stimulated under sucrose starvation conditions.  相似文献   

18.
Raz V  Fluhr R 《The Plant cell》1993,5(5):523-530
A plethora of abiotic and biotic environmental stresses exert their influence on plants via the gaseous hormone ethylene. In addition, aspects of plant development and climacteric fruit ripening are regulated by ethylene. Sensitivity to ethylene is presumably mediated by a specific ethylene receptor whose activation signal is then transduced via an unknown cascade pathway. We have used the plant pathogenesis response, exemplified by the induction of pathogenesis-related (PR) genes, as a paradigm to investigate ethylene-dependent signal transduction in the plant cell. Ethylene application induced very rapid and transient protein phosphorylation in tobacco leaves. In the presence of the kinase inhibitors H-7 and K-252a, the transient rise in phosphorylation and the induced expression of PR genes were abolished. Similarly, these inhibitors blocked the response induced by an ethylene-dependent elicitor, [alpha]-AB. Reciprocally, application of okadaic acid, a specific inhibitor of phosphatases type 1 and type 2A, enhanced total protein phosphorylation and by itself elicited the accumulation of PR proteins. In the presence of H-7 and K-252a, PR protein accumulation induced by okadaic acid was blocked. In contrast to the action of ethylene and [alpha]-AB, xylanase elicits the accumulation of PR protein by an ethylene-independent pathway. Xylanase-induced PR protein accumulation was not affected by H-7 and K-252a. The results indicate that responsiveness to ethylene in leaves is transduced via putative phosphorylated intermediates that are regulated by specific kinases and phosphatases.  相似文献   

19.
Abstract: Ligand binding to the cannabinoid receptor of brain membranes has been characterized using [3H]CP 55,940 and the Multiscreen Filtration System. Binding of [3H]CP 55,940 is saturable and reaches equilibrium by 45 min at room temperature. At a concentration of 10 µg of membrane protein/well, the K D for [3H]CP 55,940 is 461 p M and the B max is 860 fmol/mg of protein. The apparent K D of [3H]CP 55,940 is dependent upon tissue protein concentration, increasing to 2,450 p M at 100 µg of membrane protein. Binding of [3H]CP 55,940 is dependent upon the concentration of bovine serum albumin in the buffer; the highest ratio of specific to nonspecific binding occurs between 0.5 and 1.0 mg/ml. The K i of anandamide, a putative endogenous ligand of the cannabinoid receptor, is 1.3 µ M in buffer alone and 143 n M in the presence of 0.15 m M phenylmethylsulfonyl fluoride. When [14C]anandamide is incubated with rat forebrain membranes at room temperature, it is degraded to arachidonic acid; the hydrolysis is inhibited by 0.15 m M phenylmethylsulfonyl fluoride. These results support the hypothesis that anandamide is a high-affinity ligand of the cannabinoid receptor and that it is rapidly degraded by membrane fractions.  相似文献   

20.
We identified a mutant of Arabidopsis thaliana ecotype Col-0 in which significantly reduced levels of expression of the gene for β-amylase ( ATβ-Amy ) were detected in leaves in response to high concentrations of sucrose, glucose or fructose. Genetic studies, including a cross with transgenic plants that harbored the ATβ-Amy:GUS transgene with the promoter of ATβ-Amy , indicated that this phenotype was caused by a recessive mutation, Iba1 , that affected expression of ATβ-Amy in trans . We also found a reduced level of sugar-induced expression of ATβ-Amy in the Landsberg erecta (L er ) ecotype compared with other ecotypes. This phenotype seemed to be due to a recessive trait, provisionally designated Iba2 , that was linked to neither erecta nor Iba1 . The Iba2 mutation also affected expression of ATβ-Amy:GUS transgene. Accumulation of starch and sugars after treatment of leaves with sucrose was not affected in the Iba1 mutant and L er plants. However, both Iba1 mutant and L er plants accumulated low levels of anthocyanin in response to sucrose, results that suggested the existence of some genetic linkage between regulation of the expression of ATβ-Amy and regulation of the accumulation of anthocyanin. Although the Iba1 and Iba2 mutations did not affect sugar-inducible gene expression in general, the expression of sugar-regulated genes other than the gene for β-amylase was differentially affected in the Iba1 mutant and L er plants. These results suggest that the sugar-regulated expression of many genes in plants might be mediated by multiple signal-transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号