首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A desulfoviridin-type sulfite reductase having the alpha band at 638 nm was purified from Desulfovibrio africanus Benghazi (NCIB 8401) by chromatography on DEAE-cellulose, Sephadex G-200, and DEAE-Sepharose columns and by disc gel electrophoresis. The content of desulfoviridin in the soluble protein was estimated to be about 6% from the purification indexes. Like the typical desulfoviridin from D. vulgaris Miyazaki K, it formed mainly trithionate besides thiosulfate and sulfide in sulfite reduction coupled to hydrogenase and methyl viologen. No significant differences in the amino acid compositions, CD patterns in the UV (205-250 nm) region, and subunit structures were found, except for a pI value about 1 unit larger (pI 5.3). The split Soret (410 +/- 2 nm, less intense peak at 391 +/- 2 nm with a shoulder around 380 nm) and beta (584 +/- 2 nm) band maxima of the enzyme as isolated, and the visible absorption and fluorescence spectra of the acidic acetone-extracted chromophore were almost identical to those ascribed to sirohydrochlorin in spite of the reported difference in the native enzyme (alpha band maxima at 638 nm as against 628 +/- 2 nm in a typical desulfoviridin). Iron was the only significant chelatable metal contained in the chromophore. Some differences between africanus and vulgaris desulfoviridins were observed in the CD patterns in the UV to near UV region (250-340 nm) and also in the visible absorption spectra in the presence of dithionite.  相似文献   

2.
Bisulfite reductase (desulfoviridin) and an assimilatory sulfite reductase have been purified from extracts of Desulfovibrio vulgaris. The bisulfite reductase has absorption maxima at 628, 580, 408, 390, and 279 nm, and a molecular weight of 226,000 by sedimentation equilibrium, and was judged to be free of other proteins by disk electrophoresis and ultracentrifugation. On gels, purified bisulfite reductase exhibited two green bands which coincided with activity and protein. The enzyme appears to be a tetramer but was shown to have two different types of subunits having molecular weights of 42,000 and 50,000. The chromophore did not form an alkaline ferrohemochromogen, was not reduced with dithionite or borohydride, and did not form a spectrally visible complex with CO. The assimilatory sulfite reductase has absorption maxima at 590, 545, 405 and 275 nm and a molecular weight of 26,800, and appears to consist of a single polypeptide chain as it is not dissociated into subunits by sodium dodecyl sulfate. By disk electrophoresis, purified sulfite reductase exhibited a single greenish-brown band which coincided with activity and protein. The sole product of the reduction was sulfide, and the chromophore was reduced by borohydride in the presence of sulfite. Carbon monoxide reacted with the reduced chromophore but it did not form a typical pyridine ferrohemochromogen. Thiosulfate, trithionate, and tetrathionate were not reduced by either enzyme preparation. In the presence of 8 M urea, the spectrum of bisulfite reductase resembles that of the sulfite reductase, thus suggesting a chemical relationship between the two chromophores.  相似文献   

3.
The type and the amount of end products resulting from sulfite reduction catalysed by a single partially purified desulfoviridin preparation from Desulfovibrio gigas were shown to depend upon the enzymic assay conditions employed. Both manometric and spectrophotometric assays were used, with reduced methyl viologen serving as the electron donor in each system. Trithionate, thiosulfate, tetrathionate and sulfide were identified as possible end products. In the manometric assays, sulfide production was favoured by high reduced methyl viologen concentrations, low sulfite concentrations and a pH value of 7.0 as opposed to 6.0. In the spectrophotometric assays, results approaching the stoichiometric conversion of sulfite to sulfide were obtained only at high initial reduced methyl viologen concentrations.  相似文献   

4.
Sulfate-reducing bacteria, Desulfovibrio vulgaris, strain Miyazaki, were grown on either sulfate, sulfite, or thiosulfate as the terminal electron acceptor. Better growth was observed on sulfite and less growth on thiosulfate than on sulfate. Enzyme levels of adenylylsulfate (APS) reductase [EC 1.8.99.2], reductant-activated inorganic pyrophosphatase [EC 3.6.1.1], sulfite reductase [EC 1.8.99.1] (desulfoviridin), hydrogenase [EC 1.12.2.1], and Mg2+-activated ATPase [EC 3.6.1.3] were compared in crude extracts of these cells at various stages of growth. 1) The specific activity of APS reductase in sulfite-grown cells was only one-fourth that in sulfate-grown cells throughout growth. Thiosulfate-grown cells had an activity intermediate between those of sulfate- and sulfite-grown cells. 2) Cells grown on sulfite had lower specific activity of reductant-activated inorganic pyrophosphatase than cells grown on sulfate or thiosulfate. 3) The specific activity of sulfite reductase (desulfoviridin) was highest in sulfite-grown cells. The sulfite medium gave the enzyme in high yield as well as with high specific activity. 4) The specific activities of hydrogenase and Mg2+-ATPase were not significantly altered by electron acceptors in the growth medium.  相似文献   

5.
Summary Hydrogenase, desulfoviridin and molybdenum proteins have been isolated from a halophilic sulfate-reducing bacteria,Desulfovibrio salexigens strain British Guiana. At least 50% of the hydrogenase was found to be located in the periplasm. The hydrogenase has a typical absorption spectrum, a 400/280 nm ratio of 0.28, a molecular weight by sedimentation equilibrium of 81 000 and is composed of two subunits. It has one nickel, one selenium and 12 iron atoms per molecule. The sulfite reductase has a typical desulfoviridin absorption spectrum, a molecular weight of 191 000 and iron and zinc associated with it. The molybdenum-iron protein is gray-green in color and exhibits an absorbtion spectrum with peaks around 612, 410, 275 nm and a shoulder at 319 nm. It is composed of subunits of approximately 13 250 and has an approximate molecular weight of 110 000. Three molybdenum and 20 iron atoms are found associated with it.An extensive study of these three proteins will allow a better understanding of the function of these enzymes and also of their possible role in microbially caused corrosion.  相似文献   

6.
Dissimilatory sulfite reductase (dSiR, DsrAB) is a key protein in dissimilatory sulfur metabolism, one of the earliest types of energy metabolism to be traced on earth. dSirs are large oligomeric proteins around 200kDa forming an alpha(2)beta(2) arrangement and including a unique siroheme-[4Fe-4S] coupled cofactor. Here, we report the purification, crystallization and preliminary X-ray diffraction analysis of dSir isolated from Desulfovibrio vulgaris Hildenborough, also known as desulfoviridin. In this enzyme the DsrAB protein is associated with DsrC, a protein of unknown function that is believed to play an important role in the sulfite reduction. Crystals belong to the monoclinic space group P2(1) with unit-cell parameters a=122.7, b=119.4 and c=146.7A and beta =110.0 degrees , and diffract X-rays to 2.8A on a synchrotron source.  相似文献   

7.
The structural genes for dissimilatory sulfite reductase (desulfoviridin) from Desulfovibrio vulgaris Hilden-borough were cloned as a 7.2-kbp SacII DNA fragment. Nucleotide sequencing indicated the presence of a third gene, encoding a protein of only 78 amino acids, immediately downstream from the genes for the alpha and beta subunits (dsvA and dsvB). We designated this protein DsvD and the gene encoding it the dsvD gene. The alpha- and beta-subunit sequences are highly homologous to those of the dissimilatory sulfite reductase from Archaeoglobus fulgidus, a thermophilic archaeal sulfate reducer, which grows optimally at 83 degrees C. A gene with significant homology to dsvD was also found immediately downstream from the dsrAB genes of A. fulgidus. The remarkable conservation of gene arrangement and sequence across domain (bacterial versus archaeal) and physical (mesophilic versus thermophilic) boundaries indicates an essential role for DsvD in dissimilatory sulfite reduction and allowed the construction of conserved deoxyoligonucleotide primers for detection of the dissimilatory sulfite reductase genes in the environment.  相似文献   

8.
The heme2 chromophore of the “assimilatory” E. coli sulfite reductase is an iron-octacarboxylic tetrahydroporphyrin of the isobacteriochlorin type (1). Although the two “dissimilatory” sulfite reductases, desulfoviridin and desulforubidin, from the sulfate reducing bacteria Desulfovibrio gigas and Desulfovibrio desulfuricans (Norway strain), have absorption spectra and reaction products which differ from those of E. coli sulfite reductase, the present studies indicate that they contain prosthetic groups with an organic structure closely similar or identical to that of the E. coli sulfite reductase heme. EPR spectra show high-spin ferriheme in all three enzymes. It is clear, however, that the prosthetic groups must reside in substantially different environments within their respective proteins.  相似文献   

9.
A new pigment, desulforubidin, that has sulfite reducing activity, has been purified from extracts of the Norway strain of Desulfovibrio desulfuricans, which lacks desulfoviridin.  相似文献   

10.
Sulfite oxidase purified from livers of tungsten-treated rats has been used for EPR studies of tungsten substituted at the molybdenum site of the enzyme in a fraction of the molecules. The EPR signal of W(V) in sulfite oxidase is quite similar to that of Mo(V) in its line shape and in its sensitivity to the presence of anions such as phosphate and fluoride. Hyperfine interaction with a dissociable proton is also observed in both signals. The pH-dependent alteration in line shape exhibited by the Mo(V) EPR signal of the rat liver enzyme. Incomplete reduction of the tungsten center at pH 9 is indicated by attenuated signal intensity at this pH. The W(V) signal has g values lower than those of the Mo(V) signal, has a much broader resonance envelope, and is much less readily saturated by increasing microwave power. Kinetic studies on the reduction of the heme and tungsten centers of sulfite oxidase have shown that reduction of de-molybdo forms of sulfite oxidase by sulfite is catalyzed by the residual traces of native molybdenum-containing molecules. Reduction is accomplished by electron transfer involving intermolecular heme-heme interaction. The W(V) signal is generated only after all the heme centers are reduced. The rate and extent of heme reduction at pH 9 are the same as at pH 7. Studies on the reoxidation of W(V) and reduced heme by O2 and by cytochrome c suggest that the cytochrome b5 of sulfite oxidase is the site of electron transfer to cytochrome c, whereas oxidase activity is the property of the molybdenum center. It appears that the tungsten center in sulfite oxidase is incapable of oxidizing sulfite.  相似文献   

11.
Desulfoviridin preparations from D. gigas showed variations in the position of the absorption maximum the beta-peak) in the 580-nm region of the specturm. On treatment with Na2S2O4 a preparation with a beta-peak at 585 nm was affected rapidly, the 585-nm peak shifting to the 596-nm region; this was partially reversed by K3Fe(CN)6. Treatment of the original preparation with K3Fe(CN)6 resulted in a shift of the beta-peak to 582-583 nm. Desulfoviridins with beta-peaks from 580 to 583 nm were not rapidly affected by Na2S2O4. The spectrum of the chromophore of desulfoviridin way also affected by Na2S2O4 with the peak at 587 nm shifting to 597 nm; this effect was completely reversed by oxygen. There was no evidence to show that spectral variations in desulfoviridin preparations were due to the loss or acquisition of metal ions during growth or to the selection of mutants containing spectrally different desulfoviridins. It is suggested that during biosynethesis oal detachment of the chromophore, thus causing a change towards the spectral properites of the detached chromophore.  相似文献   

12.
Sulfate reduction is one of the earliest types of energy metabolism used by ancestral organisms to sustain life. Despite extensive studies, many questions remain about the way respiratory sulfate reduction is associated with energy conservation. A crucial enzyme in this process is the dissimilatory sulfite reductase (dSiR), which contains a unique siroheme-[4Fe4S] coupled cofactor. Here, we report the structure of desulfoviridin from Desulfovibrio vulgaris, in which the dSiR DsrAB (sulfite reductase) subunits are bound to the DsrC protein. The alpha(2)beta(2)gamma(2) assembly contains two siroheme-[4Fe4S] cofactors bound by DsrB, two sirohydrochlorins and two [4Fe4S] centers bound by DsrA, and another four [4Fe4S] centers in the ferredoxin domains. A sulfite molecule, coordinating the siroheme, is found at the active site. The DsrC protein is bound in a cleft between DsrA and DsrB with its conserved C-terminal cysteine reaching the distal side of the siroheme. We propose a novel mechanism for the process of sulfite reduction involving DsrAB, DsrC, and the DsrMKJOP membrane complex (a membrane complex with putative disulfide/thiol reductase activity), in which two of the six electrons for reduction of sulfite derive from the membrane quinone pool. These results show that DsrC is involved in sulfite reduction, which changes the mechanism of sulfate respiration. This has important implications for models used to date ancient sulfur metabolism based on sulfur isotope fractionations.  相似文献   

13.
Thiobacillus ferrooxidans cells grown on ferrous iron oxidized sulfite to sulfate at pH 3, possibly by a free radical mechanism involving iron and cytochrome oxidase. A purely chemical system with low concentrations of Fe3+ simulated the T. ferrooxidans system. Metal chelators, ethylenediamine tetraacetic acid (EDTA), 4,5-dihydroxy-1-3-benzene disulfonic acid (Tiron), o-phenanthroline, and 2,2'-dipyridyl, inhibited both sulfite oxidation systems, but the T. ferrooxidans system was inhibited only after the initial brief oxygen consumption. EDTA and Tiron, strong chelators of Fe3+, inhibited the oxidation at lower concentrations than o-phenanthroline and 2,2'-dipyridyl, strong chelators of Fe2+. Inhibition of Fe3+-catalyzed sulfite oxidation by EDTA and Tiron was instant, but the inhibition by o-phenanthroline and dipyridyl was briefly delayed, presumably for the reduction of Fe3+ to Fe2+. Mannitol, a free radical scavenger, inhibited both systems to the same extent. Cyanide and azide inhibited only the T. ferrooxidans system, suggesting a role of cytochrome oxidase. It is proposed that sulfite is oxidized by a free radical mechanism initiated by Fe3+ on the cell surface of T. ferrooxidans. Cytochrome oxidase is possibly involved in the regeneration of Fe3+ from Fe2+ by the normal Fe2+-oxidizing system of T. ferrooxidans.  相似文献   

14.
Sulfite reductase activity by algal extracts was investigated using reduced methylviologen as a hydrogen donor. Sulfite reductase appears to be widely distributed in various algae, but the enzymatic activity was not detected in the brown algae examined. The addition of phosphate buffer to the reaction mixture caused a marked decrease in activity. Sulfite reductase was partially purified from the autolysate of Porphyra tenera and some properties were studied. The optimal pH was 7.5 to 8.5 in Tris-HGl buffer system. The Km for sulfite was 6.65 × 10?4m. The enzymatic activity was completely inhibited by potassium cyanide at 5 × 10?4m. The enzyme catalyzed the reduction of sulfite to sulfide. Neither NADPH nor NADH acts as a hydrogen donor. However, it was revealed that ferredoxin can act as an electron carrier in sulfite reduction to sulfide in Porphyra extract.  相似文献   

15.
In the crystal structure of chicken sulfite oxidase, the residue Tyr(322) (Tyr(343) in human sulfite oxidase) was found to directly interact with a bound sulfate molecule and was proposed to have an important role in mediating the substrate specificity and catalytic activity of this molybdoprotein. In order to understand the role of this residue in the catalytic mechanism of sulfite oxidase, steady-state and stopped-flow analyses were performed on wild-type and Y343F human sulfite oxidase over the pH range 6-10. In steady-state assays of Y343F sulfite oxidase using cytochrome c as the electron acceptor, k(cat) was somewhat impaired ( approximately 34% wild-type activity at pH 8.5), whereas the K(m)(sulfite) showed a 5-fold increase over wild type. In rapid kinetic assays of the reductive half-reaction of wild-type human sulfite oxidase, k(red)(heme) changed very little over the entire pH range, with a significant increase in K(d)(sulfite) at high pH. The k(red)(heme) of the Y343F variant was significantly impaired across the entire pH range, and unlike the wild-type protein, both k(red)(heme) and K(d)(sulfite) were dependent on pH, with a significant increase in both kinetic parameters at high pH. Additionally, reduction of the molybdenum center by sulfite was directly measured for the first time in rapid reaction assays using sulfite oxidase lacking the N-terminal heme-containing domain. Reduction of the molybdenum center was quite fast (k(red)(Mo) = 972 s(-1) at pH 8.65 for wild-type protein), indicating that this is not the rate-limiting step in the catalytic cycle. Reduction of the molybdenum center of the Y343F variant by sulfite was more significantly impaired at high pH than at low pH. These results demonstrate that the Tyr(343) residue is important for both substrate binding and oxidation of sulfite by sulfite oxidase.  相似文献   

16.
T Araiso  K Miyoshi  I Yamazaki 《Biochemistry》1976,15(14):3059-3063
Using a rapid-scan spectrophotometer equipped with a stopped-flow apparatus, reactions of sulfite with compounds I and II of two horseradish peroxidase isoenzymes A and C were investigated. The direct two-electron reduction of peroxidase compound I by sulfite occurred at acidic pH but the mechanism gradually changed to the two-step reduction with the intermediate formation of compound II as the pH increased. The pH at which the one- and two-electron changes occurred at the same speed was 4.5 for peroxidase A and 7.7 for peroxidase C. A new peroxidase intermediate was found in the reaction between peroxidase compound II and sulfite. The sulfite compound showed a characteristic absorption band at 850 nm and the optical spectrum was similar to that of isoporphyrins but was quite different from that of sulfhemoproteins. The rate (k) of conversion from the sulfite-compound II complex to the sulfite compound was proportional to the concentration of H+ and the log k vs. pH plot for peroxidase A moved to the acidic side by 1.1 pH unit from that for peroxidase C.  相似文献   

17.
Thiosulfate reductase of the dissimilatory sulfate-reducing bacterium Desulfovibrio gigas has been purified 415-fold and its properties investigated. The enzyme was unstable during the different steps of purification as well as during storage at - 15 degrees C. The molecular weight of thiosulfate reductase estimated from the chromatographic behaviour of the enzyme on Sephadex G-200 was close to 220000. The absorption spectrum of the purified enzyme exhibited a protein peak at 278 nm without characteristic features in the visible region. Thiosulfate reductase catalyzed the stoichiometric production of hydrogen sulfide and sulfite from thiosulfate, and exhibited tetrathionate reductase activity. It did not show sulfite reductase activity. The optimum pH of thiosulfate reduction occurred between pH 7.4 and 8.0 and its Km value for thiosulfate was calculated to be 5 - 10(-4)M. The sensitivity of thiosulfate reductase to sulfhydryl reagent and the reversal of the inhibition by cysteine indicated that one or more sulfhydryl groups were involved in the catalytic activity. The study of electron transport between hydrogenase and thiosulfate reductase showed that the most efficient coupling was obtained with a system containing cytochromes c3 (Mr = 13000) and c3 (Mr = 26000).  相似文献   

18.
A siroheme-containing sulfite reductase was isolated from Thiobacillus denitrificans, purified to an electrophoretically homogenous state, and investigated with regard to some of its molecular and catalytic properties. The enzyme was a tetramer with a molecular weight of 160 000, consisting of two types of subunits arranged to an alpha 2 beta 2-structure. The molecular weight of the alpha-subunit was 38 000, that of the beta-subunit 43 000. As prosthetic groups siroheme and Fe/S groupings could be detected. The absorption spectrum showed maxima at 273 nm, 393 nm, and 594 nm; the molar extinction coefficient at these wavelengths were 280, 181, and 60 . 10(3) cm2 . mmol-1, respectively. With reduced viologen dyes the enzyme reduced sulfite to sulfide, thiosulfate and trithionate. In many properties T. denitrificans sulfite reductase closely resembled desulfoviridin, the dissimilatory sulfite reductase of Dssulfovibrio species. It is proposed that the physiological function of this enzyme is not to reduce but rather to form sulfite from reduced sulfur compounds in the course of dissimilatory sulfur oxidation in T. denitrificans.  相似文献   

19.
A dissimilatory sulfite reductase (DSR) was purified from the anaerobic, taurine-degrading bacterium Bilophila wadsworthia RZATAU to apparent homogeneity. The enzyme is involved in energy conservation by reducing sulfite, which is formed during the degradation of taurine as an electron acceptor, to sulfide. According to its UV-visible absorption spectrum with maxima at 392, 410, 583, and 630 nm, the enzyme belongs to the desulfoviridin type of DSRs. The sulfite reductase was isolated as an alpha2beta)gamma(n) (n > or = 2) multimer with a native size of 285 kDa as determined by gel filtration. We have sequenced the genes encoding the alpha and beta subunits (dsrA and dsrB, respectively), which probably constitute one operon. dsrA and dsrB encode polypeptides of 49 (alpha) and 54 kDa (beta) which show significant similarities to the homologous subunits of other DSRs. The dsrB gene product of B. wadsworthia is apparently a fusion protein of dsrB and dsrD. This indicates a possible functional role of DsrD in DSR function because of its presence as a fusion protein as an integral part of the DSR holoenzyme in B. wadsworthia. A phylogenetic analysis using the available Dsr sequences revealed that B. wadsworthia grouped with its closest 16S rDNA relative Desulfovibrio desulfuricans Essex 6.  相似文献   

20.
The Escherichia coli ssuEADCB gene cluster is required for the utilization of alkanesulfonates as sulfur sources, and is expressed under conditions of sulfate or cysteine starvation. The SsuD and SsuE proteins were overexpressed and characterized. SsuE was purified to homogeneity as an N-terminal histidine-tagged fusion protein. Native SsuE was a homodimeric enzyme of M(r) 58,400, which catalyzed an NAD(P)H-dependent reduction of FMN, but it was also able to reduce FAD or riboflavin. The SsuD protein was purified to >98% purity using cation exchange, anion exchange, and hydrophobic interaction chromatography. The pure enzyme catalyzed the conversion of pentanesulfonic acid to sulfite and pentaldehyde and was able to desulfonate a wide range of sulfonated substrates including C-2 to C-10 unsubstituted linear alkanesulfonates, substituted ethanesulfonic acids and sulfonated buffers. SsuD catalysis was absolutely dependent on FMNH(2) and oxygen, and was maximal for SsuE/SsuD molar ratios of 2.1 to 4.2 in 10 mM Tris-HCl, pH 9.1. Native SsuD was a homotetrameric enzyme of M(r) 181,000. These results demonstrate that SsuD is a broad range FMNH(2)-dependent monooxygenase catalyzing the oxygenolytic conversion of alkanesulfonates to sulfite and the corresponding aldehydes. SsuE is the FMN reducing enzyme providing SsuD with FMNH(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号