首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis is a complex process that plays a central role in physiological and pathological cell death. This fast evolving research area has experienced incredible development in the past few years. Progress in the knowledge of the structure of many of the main molecular actors of the apoptotic signal transduction pathways has driven the design of synthetic peptides that in some cases can function as simplified versions of their parent proteins. These molecules are contributing to a better understanding of the activity and regulation of apoptotic proteins and also are setting the basis for the discovery of effective drugs to combat important diseases related to apoptosis. Most applications of peptides in apoptosis research are so far related to caspases, caspase regulatory proteins, such as LAPs and Smac, and proteins of the Bcl-2 family. Additionally, important perspectives are open to other systems, such as the macromolecular assemblies that are responsible for the activation of initiator caspases.  相似文献   

2.
Bcl-2 family proteins are involved in the cell homeostasis by regulating programmed cell death. Some of these proteins promote apoptosis, while others inhibit the same process. The C-terminal hydrophobic domain of some of these proteins is predicted to be involved in anchoring them to a variety of cell membranes, such as mitochondrial, endoplasmic reticulum and nuclear membranes. We have used five synthetic peptides imitating the C-terminal domain from both anti-apoptotic (Bcl-2) and pro-apoptotic members (Bak, Bax, and two mutants of this last protein) of this family to study their interaction with model membranes. Some differences were detected in the interaction with these peptides. The addition of all the peptides to large unilamellar vesicles destabilized them and released encapsulated carboxyfluorescein to different degrees, so that fluidity and the increase in negative curvature favoured the extent in the release of carboxyfluorescein. Bcl-2-C and Bax-C peptides produced the highest release levels in most cases, while BaxS184K-C was the least efficient in this respect. These results indicate that these C-terminal domains are able to insert themselves in the membranes, each in a different way that is probably related with their different way which can be related to their differing locations within the cell and their different roles in regulating apoptosis.  相似文献   

3.
Bcl-2 family proteins are involved in the cell homeostasis by regulating programmed cell death. Some of these proteins promote apoptosis, while others inhibit the same process. The C-terminal hydrophobic domain of some of these proteins is predicted to be involved in anchoring them to a variety of cell membranes, such as mitochondrial, endoplasmic reticulum and nuclear membranes. We have used five synthetic peptides imitating the C-terminal domain from both anti-apoptotic (Bcl-2) and pro-apoptotic members (Bak, Bax, and two mutants of this last protein) of this family to study their interaction with model membranes. Some differences were detected in the interaction with these peptides. The addition of all the peptides to large unilamellar vesicles destabilized them and released encapsulated carboxyfluorescein to different degrees, so that fluidity and the increase in negative curvature favoured the extent in the release of carboxyfluorescein. Bcl-2-C and Bax-C peptides produced the highest release levels in most cases, while BaxS184K-C was the least efficient in this respect. These results indicate that these C-terminal domains are able to insert themselves in the membranes, each in a different way that is probably related with their different way which can be related to their differing locations within the cell and their different roles in regulating apoptosis.  相似文献   

4.
The antiapoptotic proteins of the Bcl-2 family are expressed at high levels in many types of cancer. However, the mechanism by which Bcl-2 family proteins regulate apoptosis is not fully understood. Here, we demonstrate the interaction of Bcl-2 with the outer mitochondrial membrane protein, voltage-dependent anion channel 1 (VDAC1). A direct interaction of Bcl-2 with bilayer-reconstituted purified VDAC was demonstrated, with Bcl-2 decreasing channel conductance. Expression of Bcl-2-GFP prevented apoptosis in cells expressing native but not certain VDAC1 mutants. VDAC1 sequences and amino acid residues important for interaction with Bcl-2 were defined through site-directed mutagenesis. Synthetic peptides corresponding to the VDAC1 N-terminal region and selected sequences bound specifically, in a concentration- and time-dependent manner, to immobilized Bcl-2, as revealed by the real-time surface plasmon resonance. Moreover, expression of the VDAC1-based peptides in cells over-expressing Bcl-2 prevented Bcl-2-mediated protection against staurosporine-induced apoptotic cell death. Similarly, a cell-permeable VDAC1-based synthetic peptide was also found to prevent Bcl-2-GFP-mediated protection against apoptosis. These results point to Bcl-2 as promoting tumor cell survival through binding to VDAC1, thereby inhibiting cytochrome c release and apoptotic cell death. Moreover, these findings suggest that interfering with the binding of Bcl-2 to mitochondria by VDAC1-based peptides may serve to potentiate the efficacy of conventional chemotherapeutic agents.  相似文献   

5.
Bcl-2 homology domain-3 (BH3) peptides are potent cancer therapeutic reagents that target regulators of apoptotic cell death in cancer cells. However, their cytotoxic effects are affected by different expression levels of Bcl-2 family proteins. We recently found that the amphipathic tail-anchoring peptide (ATAP) from Bfl-1, a bifunctional Bcl-2 family member, produced strong pro-apoptotic activity by permeabilizing the mitochondrial outer membrane. Here, we test whether the activity of ATAP requires other cellular factors and whether ATAP has an advantage over the BH3 peptides in targeting cancer cells. Confocal microscopic imaging illustrates specific targeting of ATAP to mitochondria, whereas BH3 peptides show diffuse patterns of cytosolic distribution. Although the pro-apoptotic activities of BH3 peptides are largely inhibited by either overexpression of anti-apoptotic Bcl-2 or Bcl-xL or nullification of pro-apoptotic Bax and Bak in cells, the pro-apoptotic function of ATAP is not affected by these cellular factors. Reconstitution of synthetic ATAP into liposomal membranes results in release of fluorescent molecules of the size of cytochrome c from the liposomes, suggesting that the membrane permeabilizing activity of ATAP does not require additional protein factors. Because ATAP can target to the mitochondrial membrane and its pro-apoptotic activity does not depend on the content of Bcl-2 family proteins, it represents a promising candidate for anti-cancer drugs that can potentially overcome the intrinsic apoptosis-resistant nature of cancer cells.  相似文献   

6.
Programmed cell death can be divided into several categories including type I (apoptosis) and type II (autophagic death). The Bcl-2 family of proteins are well-characterized regulators of apoptosis, and the multidomain pro-apoptotic members of this family, such as Bax and Bak, act as a mitochondrial gateway where a variety of apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double knockout mice are resistant to apoptosis, we found that these cells still underwent a non-apoptotic death after death stimulation. Electron microscopic and biochemical studies revealed that double knockout cell death was associated with autophagosomes/autolysosomes. This non-apoptotic death of double knockout cells was suppressed by inhibitors of autophagy, including 3-methyl adenine, was dependent on autophagic proteins APG5 and Beclin 1 (capable of binding to Bcl-2/Bcl-x(L)), and was also modulated by Bcl-x(L). These results indicate that the Bcl-2 family of proteins not only regulates apoptosis, but also controls non-apoptotic programmed cell death that depends on the autophagy genes.  相似文献   

7.
8.
Structural biology of the Bcl-2 family of proteins   总被引:29,自引:0,他引:29  
The proteins of the Bcl-2 family are important regulators of programmed cell death. Structural studies of Bcl-2 family members have provided many important insights into their molecular mechanism of action and how members of this family interact with one another. To date, structural studies have been performed on six Bcl-2 family members encompassing both anti- (Bcl-x(L), Bcl-2, KSHV-Bcl-2, Bcl-w) and pro-apoptotic (Bax, Bid) members. They all show a remarkably similar fold despite an overall divergence in amino acid sequence and function (pro-apoptotic versus anti-apoptotic). The three-dimensional structures of Bcl-2 family members consist of two central, predominantly hydrophobic alpha-helices surrounded by six or seven amphipathic alpha-helices of varying lengths. A long, unstructured loop is present between the first two alpha-helices. The structures of the Bcl-2 proteins show a striking similarity to the overall fold of the pore-forming domains of bacterial toxins. This finding led to experiments which demonstrated that Bcl-x(L), Bcl-2, and Bax all form pores in artificial membranes. A prominent hydrophobic groove is present on the surface of the anti-apoptotic proteins. This groove is the binding site for peptides that mimic the BH3 region of various pro-apoptotic proteins such as Bak and Bad. Structures of Bcl-x(L) in complex with these BH3 peptides showed that they bind as an amphipathic alpha-helix and make extensive hydrophobic contacts with the protein. These data have not only helped to elucidate the interactions important for hetero-dimerization of Bcl-2 family members but have also been used to guide the discovery of small molecules that block Bcl-x(L) and Bcl-2 function. In the recently determined structure of the anti-apoptotic Bcl-w protein, the protein was also found to have a hydrophobic groove on its surface capable of binding BH3-containing proteins and peptides. However, in the native protein an additional carboxy-terminal alpha-helix interacts with the hydrophobic groove. This is reminiscent of how the carboxy-terminal alpha-helix of the pro-apoptotic protein Bax binds into its hydrophobic groove. This interaction may play a regulatory role and for Bax may explain why it is found predominately in the cytoplasm prior to activation. The hydrophobic groove of the pro-apoptotic protein, Bid protein, is neither as long nor as deep as that found in Bcl-x(L), Bcl-2, or Bax. In addition, Bid contains an extra alpha-helix, which is located between alpha1 and alpha2 with respect to Bcl-x(L), Bcl-2, and Bax. Although there are still many unanswered questions regarding the exact mechanism by which the Bcl-2 family of proteins modulates apoptosis, structural studies of these proteins have deepened our understanding of apoptosis on the molecular level.  相似文献   

9.
10.
Apoptosis or programmed cell death is a key function in regulating skin development, homeostasis and tumorigenesis. The epidermis is exposed to various external stimuli and one of the most important is UV radiation. The UVA and UVB spectra differ in their biological effects and in their depth of penetration through the skin layers. UVB rays are absorbed directly by DNA which results in its damage. UVA can also cause DNA damage but primarily by the generation of reactive oxygen species. By eliminating photodamaged cells, apoptosis has an important function in the prevention of epidermal carcinogenesis. UV-induced apoptosis is a complex event involving different pathways. These include: 1. activation of the tumour suppressor gene p53; 2. triggering of cell death receptors directly by UV or by autocrine release of death ligands; 3. mitochondrial damage and cytochrome C release. The extrinsic pathway through death receptors such as fibroblast-associated, tumour necrosis factor receptor and TNF related apoptosis inducing ligand receptor activate caspase cascade. The intrinsic or mitochondrial pathway of apoptosis is regulated by the Bcl-2 family of proteins, anti-apoptotic (Bcl-2, Bcl-xl, Bcl-w) and the pro-apoptotic (Bax, Bak, Bid). The balance between the pro-apoptotic and anti-apoptotic proteins determines cell survival or death. We discuss recent findings in the molecular mechanisms of UV induced apoptosis.  相似文献   

11.
Caspase family proteases and apoptosis   总被引:45,自引:0,他引:45  
Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin- 1 ~-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regu- lated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain, and Ca^2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.  相似文献   

12.
Interactions among Bcl-2 family proteins mediated by Bcl-2 homology (BH) regions transform apoptosis signals into actions. The interactions between BH3 region-only proteins and multi-BH region proteins such as Bax and Bcl-2 have been proposed to be the dominant interactions required for initiating apoptosis. Experimental evidence also suggests that both homo- and hetero-interactions are mediated primarily by the BH3 regions in all Bcl-2 family proteins and contribute to commitment to or inhibition of apoptosis. We found that a peptide containing the BH3 helix of Bax was not sufficient to activate recombinant Bax to permeabilize mitochondria. However, an extended peptide containing the BH3 helix and additional downstream sequences activated Bax to permeabilize mitochondria and liposomes. Bcl-2 inhibited the membrane-permeabilizing activity of peptide-activated Bax. This activity of Bcl-2 was inhibited by the extended but not the BH3-only peptide despite both peptides binding to Bcl-2 with similar affinity. Further, membrane-bound Bax activation intermediates directly activated soluble Bax further permeabilizing the membrane. Bcl-2 inhibited Bax auto-activation. We therefore propose that Bax auto-activation amplifies the initial death signal produced by BH3-only proteins and that Bcl-2 functions as an inhibitor of Bax auto-activation.  相似文献   

13.
Life-or-death decisions by the Bcl-2 protein family   总被引:39,自引:0,他引:39  
In response to intracellular damage and certain physiological cues, cells enter the suicide program termed apoptosis, executed by proteases called caspases. Commitment to apoptosis is typically governed by opposing factions of the Bcl-2 family of cytoplasmic proteins. Initiation of the proteolytic cascade requires assembly of certain caspase precursors on a scaffold protein, and the Bcl-2 family determines whether this complex can form. Its pro-survival members can act by sequestering the scaffold protein and/or by preventing the release of apoptogenic molecules from organelles such as mitochondria. Pro-apoptotic family members act as sentinels for cellular damage: cytotoxic signals induce their translocation to the organelles where they bind to their pro-survival relatives, promote organelle damage and trigger apoptosis.  相似文献   

14.
Thymocyte selection aims to shape a T-cell repertoire that, on the one hand, is able to recognize and respond to foreign peptides and, on the other hand, tolerizes the presence of self-peptides in the periphery. Deletion of T cells or their precursors that fail to fulfill these criteria is mainly mediated by the Bcl-2-regulated apoptosis pathway. Absence of T-cell receptor (TCR)-mediated signals or hyperactivation of the TCR by high-affinity self-peptide-major histocompatibility complexes can both trigger apoptotic cell death in developing thymocytes. Notably, TCR-signaling strength also defines survival and outgrowth of the fittest antigen-specific T-cell clones in the periphery. TCR threshold activity leading to such drastically opposing signaling outcomes (life or death) is modulated in part by cytokines and other factors, such as glucocorticoids, that fine-tune the Bcl-2 rheostat, thereby impacting on cell survival. This review aims to highlight the role of Bcl-2-regulated cell death for clonal T-cell selection.  相似文献   

15.
Yin XM 《Cell research》2000,10(3):161-167
Two major apoptosis pathways have been defined in mammalian cells,the Fas/TNF-R1 death receptor pathway and the mitochondria pathway.The Bcl-2 family proteins consist of both anti-apoptosis and pro-apoptosis members that regulate apoptosis,mainly by controlling the release of cytochrome c and other mitochondrial apoptotic events.However,death signals mediated by Fas/TNF-R1 receptors can usually activate caspases directly,bypassing the need for mitochondria and escaping the regulation by Bcl-2 family proteins.Bid is a novel pro-apoptosis Bcl-2 family protein that is activated by caspase 8 in response to Fas/TNF-R1 death receptor signals.Activated Bid is translocated to mitochondria and induces cytochrome c release,which in turn activates downstream caspases.Such a connection between the two apoptosis pathways could be important for induction of apoptosis in certain types of cells and responsible for the pathogenesis of a number of human diseases.  相似文献   

16.
Background: The Bcl-2 family of proteins plays a key role in the regulation of apoptosis. Some family members prevent apoptosis induced by a variety of stimuli, whereas others promote apoptosis. Competitive dimerisation between family members is thought to regulate their function. Homologous domains within individual proteins are necessary for interactions with other family members and for activity, although the specific mechanisms might differ between the pro-apoptotic and anti-apoptotic proteins.Results: Using a cell-free system based on extracts of Xenopus eggs, we have investigated the role of the Bcl-2 homology domain 3 (BH3) from different members of the Bcl-2 family. BH3 domains from the pro-apoptotic proteins Bax and Bak, but not the BH3 domain of the anti-apoptotic protein Bcl-2, induced apoptosis in this system, as determined by the rapid activation of specific apoptotic proteases (caspases) and by DNA fragmentation. The apoptosis-inducing activity of the BH3 domains requires both membrane and cytosolic fractions of cytoplasm, involves the release of cytochrome c from mitochondria and is antagonistic to Bcl-2 function. Short peptides, corresponding to the minimal sequence of BH3 domains required to bind anti-apoptotic Bcl-2 family proteins, also trigger apoptosis in this system.Conclusions: The BH3 domains of pro-apoptotic proteins are sufficient to trigger cytochrome c release, caspase activation and apoptosis. These results support a model in which pro-apoptotic proteins, such as Bax and Bak, bind to Bcl-2 via their BH3 domains, inactivating the normal ability of Bcl-2 to suppress apoptosis. The ability of synthetic peptides to reproduce the effect of pro-apoptotic BH3 domains suggests that such peptides may provide the basis for engineering reagents to control the initiation of apoptosis.  相似文献   

17.
The pro-apoptotic members of the Bcl-2 family include initiator proteins that contain only BH3 domains and downstream effector multi-BH domain-containing proteins, including Bax and Bak. In this report, we compared the ability of the six human anti-apoptotic Bcl-2 family members to suppress apoptosis induced by overexpression of Bax or Bak, correlating findings with protein interactions measured by three different methods: co-immunoprecipitation, glutathione S-transferase pulldown, and fluorescence polarization assays employing synthetic BH3 peptides from Bax and Bak. Bcl-B and Mcl-1 showed strong preferences for binding to and suppression of Bax and Bak, respectively. In contrast, the other anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-X(L), Bcl-W, and Bfl-1) suppressed apoptosis induced by overexpression of either Bax or Bak, and they displayed an ability to bind both Bax and Bak by at least one of the three protein interaction methods. Interestingly, however, full-length Bax and Bak proteins and synthetic Bax and Bak BH3 peptides exhibited discernible differences in their interactions with some anti-apoptotic members of the Bcl-2 family, cautioning against reliance on a single method for detecting protein interactions of functional significance. Altogether, the findings reveal striking distinctions in the behaviors of Bcl-B and Mcl-1 relative to the other anti-apoptotic Bcl-2 family members, where Bcl-B and Mcl-1 display reciprocal abilities to bind and neutralize Bax and Bak.  相似文献   

18.
The proteins of the Bcl-2 family are important regulators of apoptosis, or programmed cell death. These proteins regulate this fundamental biological process via the formation of heterodimers involving both pro- and anti-apoptotic family members. Disruption of the balance between anti- and pro-apoptotic Bcl-2 proteins is the cause of numerous pathologies. Bcl-xl, an anti-apoptotic protein of this family, is known to form heterodimers with multiple pro-apoptotic proteins, such as Bad, Bim, Bak, and Bid. To elucidate the molecular basis of this recognition process, we used molecular dynamics simulations coupled with the Molecular Mechanics/Poisson-Boltzmann Surface Area approach to identify the amino acids that make significant energetic contributions to the binding free energy of four complexes formed between Bcl-xl and pro-apoptotic Bcl-2 homology 3 peptides. A fifth protein-peptide complex composed of another anti-apoptotic protein, Bcl-w, in complex with the peptide from Bim was also studied. The results identified amino acids of both the anti-apoptotic proteins as well as the Bcl-2 homology 3 (BH3) domains of the pro-apoptotic proteins that make strong, recurrent interactions in the protein complexes. The calculations show that the two anti-apoptotic proteins, Bcl-xl and Bcl-w, share a similar recognition mechanism. Our results provide insight into the molecular basis for the promiscuous nature of this molecular recognition process by members of the Bcl-2 protein family. These amino acids could be targeted in the design of new mimetics that serve as scaffolds for new antitumoral molecules.  相似文献   

19.
Apoptosis, or programmed cell death, plays a pivotal role in the elimination of unwanted, damaged, or infected cells in multicellular organisms and also in diverse biological processes, including development, cell differentiation, and proliferation. Apoptosis is a highly regulated form of cell death, and dysregulation of apoptosis results in pathological conditions including cancer, autoimmune and neurodegenerative diseases. The Bcl-2 family proteins are key regulators of apoptosis, which include both anti- and pro-apoptotic proteins, and a slight change in the dynamic balance of these proteins may result either in inhibition or promotion of cell death. Execution of apoptosis by various stimuli is initiated by activating either intrinsic or extrinsic pathways which lead to a series of downstream cascade of events, releasing of various apoptotic mediators from mitochondria and activation of caspases, important for the cell fate. In view of recent research advances about underlying mechanism of apoptosis, this review highlights the basics concept of apoptosis and its regulation by Bcl-2 family of protein. Furthermore, this review discusses the interplay of various apoptotic mediators and caspases to decide the fate of the cell. We expect that this review will add to the pool of basic information necessary to understand the mechanism of apoptosis which may implicate in designing better strategy to develop biomedical therapy to control apoptosis.  相似文献   

20.
Regulation of the cell death program involves physical interactions between different members of the Bcl-2 family that either promote or suppress apoptosis. The Bcl-2 homolog, Bak, promotes apoptosis and binds anti-apoptotic family members including Bcl-2 and Bcl-xL. We have identified a domain in Bak that is both necessary and sufficient for cytotoxic activity and binding to Bcl-xL. Sequences similar to this domain were identified in Bax and Bip1, two other proteins that promote apoptosis and interact with Bcl-xL, and were likewise critical for their capacity to kill cells and bind Bcl-xL. Thus, the domain is of central importance in mediating the function of multiple cell death-regulatory proteins that interact with Bcl-2 family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号