共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in the inbreeding coefficient, F, in the Thoroughbred horse over the past 45 years have been investigated by genotyping 467 Thoroughbred horses (born between 1961 and 2006) using the Illumina Equine SNP50 bead chip, which comprises 54,602 SNPs uniformly distributed across the equine genome. The Spearman rank correlation coefficient, r, between the year of birth and F was estimated. The results indicate that inbreeding in Thoroughbreds has increased over the past 40 years, with r = 0.24, P < 0.001 demonstrating that there is a highly significant, though relatively weak correlation between the year of birth and inbreeding coefficients. Interestingly, the majority of the increase in inbreeding is post-1996 and coincides with the introduction of stallions covering larger numbers of mares. 相似文献
2.
P. Haouzi Y. Fukuba R. Peslin B. Chalon F. Marchal J. P. Crance 《European journal of applied physiology and occupational physiology》1992,64(5):410-418
The ventilatory response to sinusoidally varying exercise was studied in five adults and seven prepubertal children to determine whether the faster kinetics of ventilation observed in children during abrupt changes in exercise intensity remained more rapid when exercise intensity varied continuously. Each subject exercised on a cycle ergometer first against a constant load and then against a load fluctuating over six different periods ranging from 0.75 to 10 min. The pedal rate was kept constant for all loads. The inspiratory minute ventilation was determined breath-by-breath. Amplitude (A) and phase angle (phi) of the fundamental component and the first harmonics of the ventilatory response were calculated by Fourier analysis for an integer number of waves for each period. From the relationship between A, phi and frequency, dynamic parameters of a first order model with and without delay were compared between adults and children. Firstly we found that the ventilatory time constant was significantly faster in children: 49.7 (SD 9.1) s vs 74.6 (SD 11.1) s (P less than 0.01). Secondly, the change in A and phi with the frequency was not however characteristic of a first order system without delay in most of the subjects (phi greater than 90 degrees for the shorter periods). Thirdly, even when the ventilatory control system was described as a first order model with a positive delay, time constants remained significantly shorter in children: 45.6 (SD 5.7) s vs 67.4 (SD 13) s (P less than 0.01). The ability to increase ventilation faster in children appeared to be a characteristic of the ventilatory control system during exercise independent of the type of drive used. 相似文献
3.
J Linderman T D Fahey G Lauten A S Brooker D Bird B Dolinar J Musselman S Lewis L Kirk 《European journal of applied physiology and occupational physiology》1990,61(3-4):294-301
The purpose of this study was to determine the relationship between blood gases and acid-base measurements in arterial, arterialized venous, and venous blood measured simultaneously during short-term maximal exercise. Ten well-trained male cyclists performed a graded maximal exercise test on a cycle ergometer to determine the power output corresponding to their peak oxygen consumption (test I), and a short-term maximal test on a cycle ergometer at peak power output (test II). During test II arterial, arterialized venous and venous blood were sampled simultaneously for determination of partial pressures of oxygen and carbon dioxide, pH, bicarbonate (HCO3-), base excess (BE), and lactate (La). Samples were taken at rest, the end of 1 min of exercise (1 ME), at the end of exercise (EE), and at 2 min of recovery (REC). During test II, subjects maintained a peak power output of 370.6 (62.1) W [mean (SD)] for 4.5, SD 1.6 min. Except at rest venous and arterialized venous measurements tended to be the same at all sampling intervals, but differed significantly from measurements in arterial blood (P less than 0.05). BE was the only variable that rendered consistently significant correlations between arterial and arterialized venous blood at each sampling interval. The pooled correlation coefficient between arterial and arterialized venous BE was r = 0.83 [regression equation: BEa = (0.84 BEav)-0.51]. Arterial La was significantly higher than venous La at 1 ME (2.8, 0.7 vs 0.8, 0.3 mmol.l-1) and higher than both venous and arterialized venous La at EE.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
The present study investigated whether blood lactate removal after supramaximal exercise and fatigue indexes measured during continuous and intermittent supramaximal exercises are related to the maximal muscle oxidative capacity in humans with different training status. Lactate recovery curves were obtained after a 1-min all-out exercise. A biexponential time function was then used to determine the velocity constant of the slow phase (gamma(2)), which denoted the blood lactate removal ability. Fatigue indexes were calculated during all-out (FI(AO)) and repeated 10-s cycling sprints (FI(Sprint)). Biopsies were taken from the vastus lateralis muscle, and maximal ADP-stimulated mitochondrial respiration (V(max)) was evaluated in an oxygraph cell on saponin-permeabilized muscle fibers with pyruvate + malate and glutamate + malate as substrates. Significant relationships were found between gamma(2) and pyruvate + malate V(max) (r = 0.60, P < 0.05), gamma(2) and glutamate + malate V(max) (r = 0.66, P < 0.01), and gamma(2) and citrate synthase activity (r = 0.76, P < 0.01). In addition, gamma(2), glutamate + malate V(max), and pyruvate + malate V(max) were related to FI(AO) (gamma(2) - FI(AO): r = 0.85; P < 0.01; glutamate + malate V(max) - FI(AO): r = 0.70, P < 0.01; and pyruvate + malate V(max) - FI(AO): r = 0.63, P < 0.01) and FI(Sprint) (gamma(2) - FI(Sprint): r = 0.74, P < 0.01; glutamate + malate V(max) - FI(Sprint): r = 0.64, P < 0.01; and pyruvate + malate V(max) - FI(Sprint): r = 0.46, P < 0.01). In conclusion, these results suggested that the maximal muscle oxidative capacity was related to blood lactate removal ability after a 1-min all-out test. Moreover, maximal muscle oxidative capacity and blood lactate removal ability were associated with the delay in the fatigue observed during continuous and intermittent supramaximal exercises in well-trained subjects. 相似文献
5.
Blood and muscle pH after maximal exercise in man 总被引:13,自引:0,他引:13
6.
Many genomic methodologies rely on the presence and extent of linkage disequilibrium (LD) between markers and genetic variants underlying traits of interest, but the extent of LD in the horse has yet to be comprehensively characterized. In this study, we evaluate the extent and decay of LD in a sample of 817 Thoroughbreds. Horses were genotyped for over 50,000 single nucleotide polymorphism (SNP) markers across the genome, with 34,848 autosomal SNPs used in the final analysis. Linkage disequilibrium, as measured by the squared correlation coefficient (r(2)), was found to be relatively high between closely linked markers (>0.6 at 5 kb) and to extend over long distances, with average r(2) maintained above non-syntenic levels for single nucleotide polymorphisms (SNPs) up to 20 Mb apart. Using formulae which relate expected LD to effective population size (N(e)), and assuming a constant actual population size, N(e) was estimated to be 100 in our population. Values of historical N(e), calculated assuming linear population growth, suggested a decrease in N(e) since the distant past, reaching a minimum twenty generations ago, followed by a subsequent increase until the present time. The qualitative trends observed in N(e) can be rationalized by current knowledge of the history of the Thoroughbred breed, and inbreeding statistics obtained from published pedigree analyses are in agreement with observed values of N(e). Given the high LD observed and the small estimated N(e), genomic methodologies such as genomic selection could feasibly be applied to this population using the existing SNP marker set. 相似文献
7.
Peak blood ammonia and lactate after submaximal, maximal and supramaximal exercise in sprinters and long-distance runners 总被引:1,自引:0,他引:1
Hiroshi Itoh Tetsuo Ohkuwa 《European journal of applied physiology and occupational physiology》1990,60(4):271-276
The purpose of this study was to elucidate the difference in peak blood ammonia concentration between sprinters and long-distance runners in submaximal, maximal and supramaximal exercise. Five sprinters and six long-distance runners performed cycle ergometer exercise at 50% maximal, 75% maximal, maximal and supramaximal heart rates. Blood ammonia and lactate were measured at 2.5, 5, 7.5, 10 and 12.5 min after each exercise. Peak blood ammonia concentration at an exercise intensity producing 50% maximal heart rate was found to be significantly higher compared to the basal level in sprinters (P less than 0.01) and in long-distance runners (P less than 0.01). The peak blood ammonia concentration of sprinters was greater in supra-maximal exercise than in maximal exercise (P less than 0.05), while there was no significant difference in long-distance runners. The peak blood ammonia content after supramaximal exercise was higher in sprinters compared with long-distance runners (P less than 0.01). There was a significant relationship between peak blood ammonia and lactate after exercise in sprinters and in long-distance runners. These results suggest that peak blood ammonia concentration after supramaximal exercise may be increased by the recruitment of fast-twitch muscle fibres and/or by anaerobic training, and that the processes of blood ammonia and lactate production during exercise may be strongly linked in sprinters and long-distance runners. 相似文献
8.
K. Nazar B. Dobrzyński R. Lewicki 《European journal of applied physiology and occupational physiology》1992,65(3):246-250
The purpose of the study was to define a relationship between plasma ammonia [NH3]pl and blood lactate concentrations [la-]b after exercise in children and to find out whether the [NH3]pl, determined during laboratory treadmill tests, may be useful as a predictor of the children's sprint running ability. A group of 20 girls and 14 boys trained in athletics or swimming and 8 untrained boys, aged 13.2 to 13.7 years, participated in the study. Their [NH3]pl and [la-]b were measured before and after incremental maximal treadmill exercise. In addition, the subjects' running performance was tested in 30-, 60- and 600- or 1000-m runs under field conditions. The [NH3]pl during the treadmill runs increased by 20.1 (SD 17.3), 24 (SD 16.7) and 10 (SD 4.3) mumol.l-1 in the girls, the trained boys and the untrained boys, respectively. The postexercise [NH3]pl correlated positively with [la-]b (r = 0.565 in the girls and 0.812 in the boys) and treadmill speed attained during the test (r = 0.489 in the girls and 0.490 in the boys). Significant correlations were also found between [NH3]pl obtained during the treadmill test and the times of 30- and 60-m runs (r = -0.676 and -0.648, respectively) in the boys but not in the girls. A comparison of the present data with those reported previously in adults showed that increases in [NH3]pl during maximal exercise in children would seem to be lower than in adult subjects both in absolute values and in relation to [la-]b.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
Acid-base balance after maximal exercise of short duration 总被引:5,自引:0,他引:5
10.
Laura J Corbin Andreas Kranis Sarah C Blott June E Swinburne Mark Vaudin Stephen C Bishop John A Woolliams 《遗传、选种与进化》2014,46(1):9
Background
Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent imputation to address this problem.Results
Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele frequency was advantageous, even when the panel was subsequently used in a population of different geographical origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different low-density panels, suggests that a 2K SNP panel would represent good value for money.Conclusions
Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to combine datasets from different genotyping platforms, which is becoming necessary since researchers are starting to use the recently developed equine 70K SNP chip. However, more work is needed to evaluate the impact of between-breed differences on imputation accuracy. 相似文献11.
12.
Ventilatory control in the athlete 总被引:7,自引:0,他引:7
E Byrne-Quinn J V Weil I E Sodal G F Filley R F Grover 《Journal of applied physiology》1971,30(1):91-98
13.
This study was carried out in order to determine the effect of acute maximal aerobic exercise on the copper and zinc levels in blood. The study was participated by 16 healthy male university students with an average age of 19.44+/-1.63. There were 5 cc blood samples taken from the participants before and after they had been subjected to aerobic loading process (20 m shuttle run). The copper and zinc levels in the blood samples were determined by the use of Anodic Stripping Voltammetry (ASV) technique. The data obtained were evaluated by simple t test and SPSS software. The results revealed the fact that the blood Zn levels of the participants increased and Cu levels decreased with statistical significant extent (p<0.01) after maximal aerobic loading. There found no correlation between the maximal aerobic power levels (Max VO2) of the participants and their resting copper and zinc blood levels. However blood zinc and Max VO2 levels of the participants were positively correlated after maximal aerobic loading. The participants were fed on a zinc and copper free diet six week prior to the program. They were also asked not to use copper and zinc containing vitamins during this period. 相似文献
14.
Choice of pacing strategy and the benefit of aerodynamic drafting are thought to be key determinants of racing performance. These effects have largely been analysed without reference to final outcome, in small datasets with low temporal resolution, and a focus on human swimming, cycling and running. Here, we determined the position and speed of 44,803 racehorses, once per second, in 3,357 races ranging in length from 1006 to 4225 m (50.9-292.9 seconds duration) using a validated radio tracking system. We find that aerodynamic drafting has a marked effect on horse performance, and hence racing outcome. Furthermore, we demonstrate that race length-dependent pacing strategies are correlated with the fastest racing times, with some horses reaching a maximum speed in excess of 19 m s(-1). The higher speeds seen with certain pacing strategies may arise due to the nature of pack racing itself, or may be a reflection of individual capabilities, that is, corresponding to horses that perform well in roles suited to their 'front-running' or 'chaser' personality traits. 相似文献
15.
Dror Ofir Pierantonio Laveneziana Katherine A Webb Denis E O'Donnell 《Journal of applied physiology》2007,102(6):2217-2226
The main purpose of this study was to examine the relative contribution of respiratory mechanical factors and the increased metabolic cost of locomotion to exertional breathlessness in obese women. We examined the relationship of intensity of breathlessness to ventilation (VE) when exertional oxygen uptake (VO2) of obesity was minimized by cycle exercise. Eighteen middle-aged (54+/-8 yr, mean+/-SD) obese [body mass index (BMI) 40.2+/-7.8 kg/m2] and 13 age-matched normal-weight (BMI 23.3+/-1.7 kg/m2) women were studied. Breathlessness at higher submaximal cycle work rates was significantly increased (by>or=1 Borg unit) in obese compared with normal-weight women, in association with a 35-45% increase in Ve and a higher metabolic cost of exercise. Obese women demonstrated greater resting expiratory flow limitation, reduced resting end-expiratory lung volume (EELV)(by 20%), and progressive increases in dynamic EELV during exercise: peak inspiratory capacity (IC) decreased by 16% (0.39 liter) of the resting value. VE/VO2 slopes were unchanged in obesity. Breathlessness ratings at any given VE or VO2 were not increased in obesity, suggesting that respiratory mechanical factors were not contributory. Our results indicate that in obese women, recruitment of resting IC and dynamic increases in EELV with exercise served to optimize operating lung volumes and to attenuate expiratory flow limitation so as to accommodate the increased ventilatory demand without increased breathlessness. 相似文献
16.
Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research. 相似文献
17.
18.
Victor A Convertino 《Journal of applied physiology》2003,95(1):192-198
We studied hemodynamic responses to alpha- and beta-receptor agonists in eight men to test the hypothesis that adrenoreceptor responsiveness is altered within 24 h of the performance of maximal exercise. Adrenoreceptor responsiveness was tested under two experimental conditions (with and without maximal exercise). Adrenoreceptor tests were performed 24 h after each subject performed graded upright cycle ergometry to volitional exhaustion. The 2 test days (experimental conditions) were separated by at least 1 wk, and the order of exercise and no-exercise conditions was counterbalanced. Steady-state graded infusions of phenylephrine (PE) and isoproterenol (Iso) were used to assess alpha- and beta-adrenoreceptor responsiveness, respectively. Slopes calculated from linear regressions between Iso and PE doses and changes in heart rate, blood pressure, and leg vascular resistance for each subject were used as an index of alpha- and beta-adrenoreceptor responsiveness. The slope of the relationship between heart rate and Iso with maximal exercise was 1773 +/- 164 beats x microm-1x kg-1x min-1 compared with 1987 +/- 142 beats x microg-1x kg-1x min-1 without exercise (P = 0.158), whereas the slopes of the relationship between vascular resistance to Iso were -438 +/- 123 peripheral resistance units (PRU) x microg-1x kg-1x min-1 with maximal exercise and -429 +/- 105 x microg-1x kg-1 x min-1 without exercise (P = 0.904). Maximal exercise was associated with greater (P < 0.05) vascular resistance (15.1 +/- 2.8 PRU x microg-1 kg-1x min-1) and mean arterial blood pressure (15.8 +/- 2.1 mmHg. microg-1x kg-1x min-1) responses to PE infusion compared with no exercise (9.0 +/- 2.0 PRU x microg-1 kg-1 x min-1 and 10.9 +/- 2.0 mmHg. microg-1x kg-1x min-1, respectively). These results provide evidence that a single bout of maximal exercise increases alpha1-adrenoreceptor responsiveness within 24 h without affecting beta-cardiac and vascular adrenoreceptor responses. 相似文献
19.
Alfredo Cordova 《Biological trace element research》1994,42(3):209-216
The Zn metabolism in experimental diabetic rats after maximal exercise was investigated. Forty male wistar rats were used, weighing 240±10 g at the beginning of this experiment. The animals were assigned to one of four experimental groups (n=10): control at rest (CR), control plus exercise (CE), diabetic at rest (DR), and diabetic plus exercise (DE). Experimental diabetes was produced by a single intraperitoneal injection of streptozotocin (STZ) (60 mg/kg). Thirty days after injection of streptozotocin, the animals of groups CE and DE were forced to acute exercise (swimming) until exhaustion. Glucose, rectal temperature (RT), pH, swimming time (ST), hematocrit (Hct), serum, and tissue (heart, liver, kidney, and muscle) Zn concentrations were measured. The streptozotocin treated animals used in the current experiment were diabetic. Increases in hepatic, renal muscle, and serum levels Zn at rest and after exercise until exhaustion were found in normal and diabetic rats. ST decreased (?180%) in the diabetic rat group. In conclusion, the results of the present study indicate that STZ-induced diabetes was associated with altered tissue Zn concentration, both at rest and after exercise. 相似文献
20.
Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. 总被引:5,自引:0,他引:5
Ralph Beneke Matthias Hütler Marcus Jung Renate M Leith?user 《Journal of applied physiology》2005,99(2):499-504
Whether age-related differences in blood lactate concentrations (BLC) reflect specific BLC kinetics was analyzed in 15 prepubescent boys (age 12.0 +/- 0.6 yr, height 1.54 +/- 0.06 m, body mass 40.0 +/- 5.2 kg), 12 adolescents (16.3 +/- 0.7 yr, 1.83 +/- 0.07 m, 68.2 +/- 7.5 kg), and 12 adults (27.2 +/- 4.5 yr, 1.83 +/- 0.06 m, 81.6 +/- 6.9 kg) by use of a biexponential four-parameter kinetics model under Wingate Anaerobic Test conditions. The model predicts the lactate generated in the extravasal compartment (A), invasion (k(1)), and evasion (k(2)) of lactate into and out of the blood compartment, the BLC maximum (BLC(max)), and corresponding time (TBLC(max)). BLC(max) and TBLC(max) were lower (P < 0.05) in boys (BLC(max) 10.2 +/- 1.3 mmol/l, TBLC(max) 4.1 +/- 0.4 min) than in adolescents (12.7 +/- 1.0 mmol/l, 5.5 +/- 0.7 min) and adults (13.7 +/- 1.4 mmol/l, 5.7 +/- 1.1 min). No differences were found in A related to the muscle mass (A(MM)) and k(1) between boys (A(MM): 22.8 +/- 2.7 mmol/l, k(1): 0.865 +/- 0.115 min(-1)), adolescents (22.7 +/- 1.3 mmol/l, 0.692 +/- 0.221 min(-1)), and adults (24.7 +/- 2.8 mmol/l, 0.687 +/- 0.287 min(-1)). The k(2) was higher (P < 0.01) in boys (2.87 10(-2) +/- 0.75 10(-2) min(-1)) than in adolescents (2.03 x 10(-2) +/- 0.89 x 10(-2) min(-1)) and adults (1.99 x 10(-2) +/- 0.93 x 10(-2) min(-1)). Age-related differences in the BLC kinetics are unlikely to reflect differences in muscular lactate or lactate invasion but partly faster elimination out of the blood compartment. 相似文献