首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples.  相似文献   

2.
We describe an enabling technique for proteome analysis based on isotope-differential dimethyl labeling of N-termini of tryptic peptides followed by microbore liquid chromatography (LC) matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS). In this method, lysine side chains are blocked by guanidination to prevent the incorporation of multiple labels, followed by N-terminal labeling via reductive amination using d(0),(12)C-formaldehyde or d(2),(13)C-formaldehyde. Relative quantification of peptide mixtures is achieved by examining the MALDI mass spectra of the peptide pairs labeled with different isotope tags. A nominal mass difference of 6 Da between the peptide pair allows negligible interference between the two isotopic clusters for quantification of peptides of up to 3000 Da. Since only the N-termini of tryptic peptides are differentially labeled and the a(1) ions are also enhanced in the MALDI MS/MS spectra, interpretation of the fragment ion spectra to obtain sequence information is greatly simplified. It is demonstrated that this technique of N-terminal dimethylation (2ME) after lysine guanidination (GA) or 2MEGA offers several desirable features, including simple experimental procedure, stable products, using inexpensive and commercially available reagents, and negligible isotope effect on reversed-phase separation. LC-MALDI MS combined with this 2MEGA labeling technique was successfully used to identify proteins that included polymorphic variants and low abundance proteins in bovine milk. In addition, by analyzing a mixture of two equal amounts of milk whey fraction as a control, it is shown that the measured average ratio for 56 peptide pairs from 14 different proteins is 1.02, which is very close to the theoretical ratio of 1.00. The calculated percentage error is 2.0% and relative standard deviation is 4.6%.  相似文献   

3.
EGFR is a potent stimulator of invasion and metastasis in head and neck squamous cell carcinomas (HNSCC). However, the mechanism by which EGFR may stimulate tumor cell invasion and metastasis still need to be elucidated. In this study, we showed that activation of EGFR by EGF in HNSCC cell line SCC10A enhanced cell migration and invasion, and induced loss of epitheloid phenotype in parallel with downregulation of E-cadherin and upregulation of N-cadherin and vimentin, indicating that EGFR promoted SCC10A cell migration and invasion possibly by an epithelial to mesenchymal transition (EMT)-like phenotype change. Interestingly, activation of EGFR by EGF induced production of matrix metalloproteinase-9 (MMP-9) and soluble E-cadherin (sE-cad), and knockdown of MMP-9 by siRNA inhibited sE-cad production induced by EGF in SCC10A. Moreover, both MMP-9 knockdown and E-cadherin overexpression inhibited cell migration and invasion induced by EGF in SCC10A. The results indicate that EGFR activation promoted cell migration and invasion through inducing MMP-9-mediated degradation of E-cadherin into sE-cad. Pharmacologic inhibition of EGFR, MEK, and PI3K kinase activity in SCC10A reduced phosphorylated levels of ERK-1/2 and AKT, production of MMP-9 and sE-cad, cell migration and invasion, and expressional changes of EMT markers (E-cadherin and N-cadherin) induced by EGF, indicating that EGFR activation promotes cell migration and invasion via ERK-1/2 and PI3K-regulated MMP-9/E-cadherin signaling pathways. Taken together, the data suggest that EGFR activation promotes HNSCC SCC10A cell migration and invasion by inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin into sE-cad related to activation of ERK-1/2 and PI3K signaling pathways.  相似文献   

4.
Plasma is recognized as a promising source of disease-related biomarkers, and proteomic approaches for identifying novel plasma biomarkers are in great demand. However, the complexity and dynamic protein concentration range of plasma remain the main obstacles for current research in this field. In this study, plasma proteins were prefractioned by immunodepletion and Protein Equalizer Technology to remove high abundant proteins, then labeled with an 8-plex isobaric tags for relative and absolute quantitation (iTRAQ) to improve the peptide ionization, and analyzed by strong-cation-exchange(SCX) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our results showed that both prefraction methods were complementary, with regard to the number of identified proteins. Good chromatographic technique is important to further fractionate the iTRAQ labeling peptides, which allowed 320 and 248 different proteins to be characterized from two prefraction methods, respectively, encompassing a wide array of biological functions and a broad dynamic range of 107. Furthermore, the accuracy of iTRAQ relative quantitation for differentially expressed proteins is associated with the number of peptides hits per protein.  相似文献   

5.
Identification of major histocompatibility complex (MHC)-associated peptides recognized by T-lymphocytes is a crucial prerequisite for the detection and manipulation of specific immune responses in cancer, viral infections, and autoimmune diseases. Unfortunately immunogenic peptides are less abundant species present in highly complex mixtures of MHC-extracted material. Most peptide identification strategies use microcapillary LC coupled to nano-ESI MS/MS in a challenging on-line approach. Alternatively MALDI PSD analysis has been applied for this purpose. We report here on the first off-line combination of nanoscale (nano) LC and MALDI TOF/TOF MS/MS for the identification of naturally processed MHC peptide ligands. These peptides were acid-eluted from human leukocyte antigen (HLA)-A2, HLA-A3, and HLA-B/-C complexes separately isolated from a renal cell carcinoma cell lysate using HLA allele-specific antibodies. After reversed-phase HPLC, peptides were further fractionated via nano-LC. This additional separation step provided a substantial increase in the number of detectable candidate species within the complex peptide pools. MALDI MS/MS analysis on nano-LC-separated material was then sufficiently sensitive to rapidly identify more than 30 novel HLA-presented peptide ligands. Peptide sequences contained perfect anchor amino acid residues described previously for HLA-A2, HLA-A3, and HLA-B7. The most promising candidate for a T-cell epitope is an HLA-B7-binding nonamer peptide derived from the tumor-associated gene NY-BR-16. To demonstrate the sensitivity of our approach we characterized peptides binding to HLA-C molecules that are usually expressed at the cell surface at approximately only 10% the levels of HLA-A or HLA-B. In fact, multiple renal cell carcinoma peptides were identified that contained anchor amino acid residues of HLA-Cw5 and HLA-Cw7. We conclude that the nano-LC MALDI MS/MS approach is a sensitive tool for the rapid and automated identification of MHC-associated tumor peptides.  相似文献   

6.
We report an isotope labeling shotgun proteome analysis strategy to validate the spectrum-to-sequence assignments generated by using sequence-database searching for the construction of a more reliable MS/MS spectral library. This strategy is demonstrated in the analysis of the E. coli K12 proteome. In the workflow, E. coli cells were cultured in normal and (15)N-enriched media. The differentially labeled proteins from the cell extracts were subjected to trypsin digestion and two-dimensional liquid chromatography quadrupole time-of-flight tandem mass spectrometry (2D-LC QTOF MS/MS) analysis. The MS/MS spectra of the two samples were individually searched using Mascot against the E. coli proteome database to generate lists of peptide sequence matches. The two data sets were compared by overlaying the spectra of unlabeled and labeled matches of the same peptide sequence for validation. Two cutoff filters, one based on the number of common fragment ions and another one on the similarity of intensity patterns among the common ions, were developed and applied to the overlaid spectral pairs to reject the low quality or incorrectly assigned spectra. By examining 257,907 and 245,156 spectra acquired from the unlabeled and (15)N-labeled samples, respectively, an experimentally validated MS/MS spectral library of tryptic peptides was constructed for E. coli K12 that consisted of 9,302 unique spectra with unique sequence and charge state, representing 7,763 unique peptide sequences. This E. coli spectral library could be readily expanded, and the overall strategy should be applicable to other organisms. Even with this relatively small library, it was shown that more peptides could be identified with higher confidence using the spectral search method than by sequence-database searching.  相似文献   

7.
8.
A method for high-resolution proteomics analyses of complex protein mixtures is presented using multidimensional HPLC coupled to MS (MDLC-MS). The method was applied to identify proteins that are differentially expressed during fruit ripening of tomato. Protein extracts from red and green tomato fruits were digested by trypsin. The resulting highly complex peptide mixtures were separated by strong cation exchange chromatography (SCX), and subsequently analyzed by RP nano-LC coupled to quadrupole-TOF MS. For detailed quantitative comparison, triplicate RP-LC-MS runs were performed for each SCX fraction. The resulting data sets were analyzed using MetAlign software for noise and data reduction, multiple alignment and statistical variance analysis. For each RP-LC-MS chromatogram, up to 7000 mass components were detected. Peak intensity data were compared by multivariate and statistical analysis. This revealed a clear separation between the green and red tomato samples, and a clear separation of the different SCX fractions. MS/MS spectra were collected using the data-dependent acquisition mode from a selected set of differentially detected peptide masses, enabling the identification of proteins that were differentially expressed during ripening of tomato fruits. Our approach is a highly sensitive method to analyze proteins in complex mixtures without the need of isotope labeling.  相似文献   

9.
We report on the analysis of endogenous peptides in cerebrospinal fluid (CSF) by mass spectrometry. A method was developed for preparation of peptide extracts from CSF. Analysis of the extracts by offline LC-MALDI MS resulted in the detection of 3,000-4,000 peptide-like features. Out of these, 730 peptides were identified by MS/MS. The majority of these peptides have not been previously reported in CSF. The identified peptides were found to originate from 104 proteins, of which several have been reported to be involved in different disorders of the central nervous system. These results support the notion that CSF peptidomics may be viable complement to proteomics in the search of biomarkers of CNS disorders.  相似文献   

10.
We report an improved shotgun method for analyzing proteomic samples containing sodium dodecyl sulfate (SDS). This method is based on the use of strong-cation exchange (SCX) liquid chromatography (LC) for SDS removal that can be integrated with peptide separation as the first dimension of the two-dimensional LC tandem mass spectrometry workflow. To optimize the performance of SDS removal, various experimental conditions, including the concentrations of chemical reagents and salts in the sample, the SDS concentration, and the SCX mobile phase composition, were investigated. It was found that a peptide recovery rate of about 90% could be achieved while removing SDS efficiently. One key finding was that, by increasing the SDS concentration to a certain level (0.5%) in the digested peptide sample, the sample recovery rate could be increased. The peptide recovery rate of BSA digests was found to be 90.6 ± 1.0% (n = 3), and SDS in the SCX fractions collected was not detectable by pyrolysis GC-MS, i.e., below the detection limit of 0.00006% for the undesalted SCX fractions. The peptide recovery rates were found to be 90.9% ± 2.7 (n = 3) and 89.5% ± 0.5% (n = 3) for the digests of the membrane-protein-enriched fractions of E. coli cell lysates and the MCF-7 breast cancer cell line, respectively. Compared to the methods that use acid-labile surfactants, such as RapiGest and PPS, for the MCF-7 membrane fraction sample, the SDS method identified, on average (n = 3), more peptides (~5%) and proteins (~16%) than the RapiGest method, while the RapiGest method identified more peptides (~21%) and proteins (~7%) from the E. coli membrane fraction than the SDS method. In both cases, the two methods identified more peptides and proteins than the PPS method. Since SCX is widely used as the first dimension of 2D-LC MS/MS, integration of SDS removal with peptide separation in SCX does not add any extra steps to the sample handling process. We demonstrated the application of this method for 2D-LC MS/MS profiling of the MCF-7 membrane protein fraction and identified 6889 unique peptides, corresponding to 2258 unique proteins or protein groups from two replicate experiments with a false peptide discovery rate of ~0.8%, compared to 5172 unique peptides and 1847 unique proteins identified by the RapiGest method.  相似文献   

11.
One of the challenges associated with large-scale proteome analysis using tandem mass spectrometry (MS/MS) and automated database searching is to reduce the number of false positive identifications without sacrificing the number of true positives found. In this work, a systematic investigation of the effect of 2MEGA labeling (N-terminal dimethylation after lysine guanidination) on the proteome analysis of a membrane fraction of an Escherichia coli cell extract by 2-dimensional liquid chromatography MS/MS is presented. By a large-scale comparison of MS/MS spectra of native peptides with those from the 2MEGA-labeled peptides, the labeled peptides were found to undergo facile fragmentation with enhanced a1 or a1-related (a(1)-17 and a(1)-45) ions derived from all N-terminal amino acids in the MS/MS spectra; these ions are usually difficult to detect in the MS/MS spectra of nonderivatized peptides. The 2MEGA labeling alleviated the biased detection of arginine-terminated peptides that is often observed in MALDI and ESI MS experiments. 2MEGA labeling was found not only to increase the number of peptides and proteins identified but also to generate enhanced a1 or a1-related ions as a constraint to reduce the number of false positive identifications. In total, 640 proteins were identified from the E. coli membrane fraction, with each protein identified based on peptide mass and sequence match of one or more peptides using MASCOT database search algorithm from the MS/MS spectra generated by a quadrupole time-of-flight mass spectrometer. Among them, the subcellular locations of 336 proteins are presently known, including 258 membrane and membrane-associated proteins (76.8%). Among the classified proteins, there was a dramatic increase in the total number of integral membrane proteins identified in the 2MEGA-labeled sample (153 proteins) versus the unlabeled sample (77 proteins).  相似文献   

12.
The peptide‐based quantitation accuracy and precision of LC‐ESI (QSTAR Elite) and LC‐MALDI (4800 MALDI TOF/TOF) were compared by analyzing identical Escherichia coli tryptic digests containing iTRAQ‐labeled peptides of defined abundances (1:1, 2.5:1, 5:1, and 10:1). Only 51.4% of QSTAR spectra were used for quantitation by ProteinPilot Software versus 66.7% of LC‐MALDI spectra. The average protein sequence coverages for LC‐ESI and LC‐MALDI were 24.0 and 18.2% (14.9 and 8.4 peptides per protein), respectively. The iTRAQ‐based expression ratios determined by ProteinPilot from the 57 467 ESI‐MS/MS and 26 085 MALDI‐MS/MS spectra were analyzed for measurement accuracy and reproducibility. When the relative abundances of peptides within a sample were increased from 1:1 to 10:1, the mean ratios calculated on both instruments differed by only 0.7–6.7% between platforms. In the 10:1 experiment, up to 64.7% of iTRAQ ratios from LC‐ESI MS/MS spectra failed S/N thresholds and were excluded from quantitation, while only 0.1% of the equivalent LC‐MALDI iTRAQ ratios were rejected. Re‐analysis of an archived LC‐MALDI sample set stored for 5 months generated 3715 MS/MS spectra for quantitation, compared with 3845 acquired originally, and the average ratios differed by only 3.1%. Overall, MS/MS‐based peptide quantitation performance of offline LC‐MALDI was comparable with on‐line LC‐ESI, which required threefold less time. However, offline LC‐MALDI allows the re‐analysis of archived HPLC‐separated samples.  相似文献   

13.
14.
Quantitative LC-MALDI is an underrepresented method, especially in large-scale experiments. The additional fractionation step that is needed for most MALDI-TOF-TOF instruments, the comparatively long analysis time, and the very limited number of established software tools for the data analysis render LC-MALDI a niche application for large quantitative analyses beside the widespread LC–electrospray ionization workflows.Here, we used LC-MALDI in a relative quantification analysis of Staphylococcus aureus for the first time on a proteome-wide scale. Samples were analyzed in parallel with an LTQ-Orbitrap, which allowed cross-validation with a well-established workflow. With nearly 850 proteins identified in the cytosolic fraction and quantitative data for more than 550 proteins obtained with the MASCOT Distiller software, we were able to prove that LC-MALDI is able to process highly complex samples. The good correlation of quantities determined via this method and the LTQ-Orbitrap workflow confirmed the high reliability of our LC-MALDI approach for global quantification analysis.Because the existing literature reports differences for MALDI and electrospray ionization preferences and the respective experimental work was limited by technical or methodological constraints, we systematically compared biochemical attributes of peptides identified with either instrument. This genome-wide, comprehensive study revealed biases toward certain peptide properties for both MALDI-TOF-TOF- and LTQ-Orbitrap-based approaches. These biases are based on almost 13,000 peptides and result in a general complementarity of the two approaches that should be exploited in future experiments.One-dimensional gel-based liquid chromatography mass spectrometry (GeLC-MS)1 is a well-established technique in life science. In combination with in vivo labeling approaches such as stable isotope labeling by amino acids in cell culture (SILAC) (1) or 15N labeling (2), it allows the relative quantification of large numbers of proteins in a complex sample. Mass spectrometry (MS) measurements in such workflows are predominantly performed with electrospray ionization (ESI)-based mass spectrometers. Online coupling of a liquid chromatography (LC) system with fast MS spectra acquisition and high-mass-accuracy ESI instruments in conjunction with fractionation on both protein and peptide levels allows the analysis of very complex samples in a relatively short period of time (3). The identification and quantification of data can be done in an automatic or semi-automatic manner with a variety of well-established software packages (4).In proteomic research, matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF) is mainly used for the analysis of non-complex protein samples that do not require fractionation on the peptide level by means of liquid chromatography. In particular, the analysis of single protein spots resulting from the two-dimensional PAGE separation of complex samples is primarily carried out with this MS technique, as it allows the fast and reliable analysis of a high number of low-complex samples (5).In most LC-MALDI workflows, the LC system and the MALDI instrument are coupled offline with a fractionation step in between. Online measurement of the LC eluate is not appropriate for most MALDI systems, as the mass analyzer is a closed vacuum chamber and sample insertion is based on a lock chamber, which precludes the direct injection of an LC run. Also, the measurement speed of most MALDI instruments is too low to analyze samples of mid and high complexity online, when large numbers of peptides elute in a short time frame. The comparatively low throughput in terms of single spectrum acquisition and the restricted online coupling for most instruments are generally circumvented by the offline coupling of an LC system and a MALDI-TOF-TOF instrument through a fractionation system (6). The decoupling from the chromatographic process makes MS measurements independent of the instrument''s scan cycle time. The only restriction is the sample consumption in the ionization process. Besides counteracting excessively long cycle times of the mass spectrometer, the offline coupling also enables multiple measurements of the same LC run and therefore allows the selective analysis of single precursor ions after a first analysis of the data (7).LC-MALDI for qualitative analysis generally ranks behind the widespread LC-ESI approaches. This is mainly because the additional fractionation step leads to longer analysis times. The discrepancy in usage is even bigger for relative quantification workflows. LC-MALDI is rarely employed for the analysis of in vivo labeled samples, especially in large-scale experiments. Even though it has been shown that shot-to-shot intensity variation, which is a general drawback for quantitative MALDI analysis, can be overcome with a suitable experimental setup (8), the lack of established software tools for the analysis of these data is evident and hampers the application of LC-MALDI in large-scale experiments.Here, we describe for the first time a global analysis of in vivo 15N labeled samples with a GeLC-MS/MS workflow carried out with a MALDI-TOF-TOF instrument. In this workflow, proteins were prefractionated on a one-dimensional SDS gel and tryptically digested, and the resulting peptide mixtures were separated by means of reversed-phase LC. The LC eluate was then fractionated, which allowed offline coupling with a MALDI-TOF-TOF instrument. Data were analyzed with the Mascot Distiller software package. The same samples were also measured with an LTQ-Orbitrap as described in a paper by Hessling et al.2 This second data set from the very same samples allowed cross-validation with a well-established workflow.We proved that LC-MALDI is an appropriate option for the quantitative analysis of in vivo labeled samples on a proteome-wide scale. We identified nearly 850 proteins and quantified more than 550 proteins within a reasonable analysis time. The resulting protein ratios correlate well with existing LTQ-Orbitrap data and should encourage groups equipped with a MALDI-TOF-TOF instrument to perform large-scale quantitative proteomic experiments.The measurement of the same samples with two mass analyzers, one using ESI and the other using MALDI, also allowed the investigation of possible biases of one or the other mass analyzer toward peptides with certain physicochemical characteristics. These ionization preferences principally open opportunities with both technical and biological potential for deeper analysis of proteomes and increased sequence coverage in general, but they also could allow the exploration specifically of detectable peptides and/or proteins that could not be found with a particular ionization technique. Existing comparative studies in this field are few so far. All of them are limited by technical or methodological constraints of their time. Investigations were mainly hampered by restricted technical opportunities in the past, leading to exemplary use of samples of low complexity (9, 10), the application of divergent sample preparations such as different LC systems for peptide fractionation (9), and a scale in terms of identification numbers (10, 11) that is too small to enable general conclusions. The large amount of data and the avoidance of any technical variations in the present study allowed the most comprehensive comparison of ESI- and MALDI-generated data to date and revealed physicochemical biases in the detection of peptides, which confirms the generally complementary nature of the two ionization techniques.  相似文献   

15.
The quantification of changes in protein abundance in complex biological specimens is essential for proteomic studies in basic and applied research. Here we report on the development and validation of the DeepQuanTR software for identification and quantification of differentially expressed proteins using LC‐MALDI‐MS. Following enzymatic digestion, HPLC peptide separation and normalization of MALDI‐MS signal intensities to the ones of internal standards, the software extracts peptide features, adjusts differences in HPLC retention times and performs a relative quantification of features. The annotation of multiple peptides to the corresponding parent protein allows the definition of a Protein Quant Value, which is related to protein abundance and which allows inter‐sample comparisons. The performance of DeepQuanTR was evaluated by analyzing 24 samples deriving from human serum spiked with different amounts of four proteins and eight complex samples of vascular proteins, derived from surgically resected human kidneys with cancer following ex vivo perfusion with a reactive ester biotin derivative. The identification and experimental validation of proteins, which were differentially regulated in cancerous lesions as compared with normal kidney, was used to demonstrate the power of DeepQuanTR. This software, which can easily be used with established proteomic methodologies, facilitates the relative quantification of proteins derived from a wide variety of different samples.  相似文献   

16.
A novel, MS-based approach for the relative quantification of proteins, relying on the derivatization of primary amino groups in intact proteins using isobaric tag for relative and absolute quantitation (iTRAQ) is presented. Due to the isobaric mass design of the iTRAQ reagents, differentially labeled proteins do not differ in mass; accordingly, their corresponding proteolytic peptides appear as single peaks in MS scans. Because quantitative information is provided by isotope-encoded reporter ions that can only be observed in MS/MS spectra, we analyzed the fragmentation behavior of ESI and MALDI ions of peptides generated from iTRAQ-labeled proteins using a TOF/TOF and/or a QTOF instrument. We observed efficient liberation of reporter ions for singly protonated peptides at low-energy collision conditions. In contrast, increased collision energies were required to liberate the iTRAQ label from lysine side chains of doubly charged peptides and, thus, to observe reporter ions suitable for relative quantification of proteins with high accuracy. We then developed a quantitative strategy that comprises labeling of intact proteins by iTRAQ followed by gel electrophoresis and peptide MS/MS analyses. As proof of principle, mixtures of five different proteins in various concentration ratios were quantified, demonstrating the general applicability of the approach presented here to quantitative MS-based proteomics.  相似文献   

17.
Leptomeningeal metastasis (LM) is a devastating complication occurring in 5% of breast cancer patients. However, the current 'gold standard' of diagnosis, namely microscopic examination of the cerebrospinal fluid (CSF), is false-negative in 25% of patients at the first lumbar puncture. In a previous study, we analyzed a set of 151 CSF samples (tryptic digests) by MALDI-TOF and detected peptide masses that were differentially expressed in breast cancer patients with LM. In the present study, we obtain for a limited number of samples exact masses for these peptides by MALDI-FTICR MS measurements. Identification of these peptides was performed by electrospray FTICR MS after separation by nano-scale LC. The database results were confirmed by targeted high mass accuracy measurements of the fragment ions in the FTICR cell. The combination of automated high-throughput MALDI-TOF measurements and analysis by FTICR MS leads to the identification of 17 peptides corresponding to 9 proteins. These include proteins that are operative in host-disease interaction, inflammation and immune defense (serotransferrin, alpha 1-antichymotrypsin, hemopexin, haptoglobin and transthyretin). Several of these proteins have been mentioned in the literature in relation to cancer. The identified proteins alpha1-antichymotrypsin and apolipoprotein E have been described in relation to Alzheimer's disease and brain cancer.  相似文献   

18.
19.
Shotgun proteome analysis platforms based on multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) provide a powerful means to discover biomarker candidates in tissue specimens. Analysis platforms must balance sensitivity for peptide detection, reproducibility of detected peptide inventories and analytical throughput for protein amounts commonly present in tissue biospecimens (< 100 microg), such that platform stability is sufficient to detect modest changes in complex proteomes. We compared shotgun proteomics platforms by analyzing tryptic digests of whole cell and tissue proteomes using strong cation exchange (SCX) and isoelectric focusing (IEF) separations of peptides prior to LC-MS/MS analysis on a LTQ-Orbitrap hybrid instrument. IEF separations provided superior reproducibility and resolution for peptide fractionation from samples corresponding to both large (100 microg) and small (10 microg) protein inputs. SCX generated more peptide and protein identifications than did IEF with small (10 microg) samples, whereas the two platforms yielded similar numbers of identifications with large (100 microg) samples. In nine replicate analyses of tryptic peptides from 50 microg colon adenocarcinoma protein, overlap in protein detection by the two platforms was 77% of all proteins detected by both methods combined. IEF more quickly approached maximal detection, with 90% of IEF-detectable medium abundance proteins (those detected with a total of 3-4 peptides) detected within three replicate analyses. In contrast, the SCX platform required six replicates to detect 90% of SCX-detectable medium abundance proteins. High reproducibility and efficient resolution of IEF peptide separations make the IEF platform superior to the SCX platform for biomarker discovery via shotgun proteomic analyses of tissue specimens.  相似文献   

20.
In this study we use replicate 2D-LC-MS/MS analyses of crude membranes from B cells derived from a patient with chronic lymphocytic leukemia (CLL) to examine the protein expression profile of CLL B cells. Protein identifications made by replicate 2D-LC-MS/MS analysis of tryptic peptides from detergent solubilized B cell membrane proteins, as well as replicate LC-MS/MS analysis of single off-line strong cation exchange chromatography (SCX) fractions, were analyzed. We show that despite the variance in SCX, capillary LC, and the data-dependent selection of precursor ions, an overlap of 64% between proteins identified in replicate runs was achieved for this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号