首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic biologists combine modular biological "parts" to create higher-order devices. Metabolic engineers construct biological "pipes" by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design.  相似文献   

2.
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.  相似文献   

3.
Systems biology is an integrative science that aims at the global characterization of biological systems. Huge amounts of data regarding gene expression, proteins activity and metabolite concentrations are collected by designing systematic genetic or environmental perturbations. Then the challenge is to integrate such data in a global model in order to provide a global picture of the cell. The analysis of these data is largely dominated by nonparametric modelling tools. In contrast, classical bioprocess engineering has been primarily founded on first principles models, but it has systematically overlooked the details of the embedded biological system. The full complexity of biological systems is currently assumed by systems biology and this knowledge can now be taken by engineers to decide how to optimally design and operate their processes. This paper discusses possible methodologies for the integration of systems biology and bioprocess engineering with emphasis on applications involving animal cell cultures. At the mathematical systems level, the discussion is focused on hybrid semi-parametric systems as a way to bridge systems biology and bioprocess engineering.  相似文献   

4.
《Organogenesis》2013,9(3):151-157
The field of tissue engineering has made considerable strides since it was first described in the late 1980s. The advent and subsequent boom in stem cell biology, emergence of novel technologies for biomaterial development, and further understanding of developmental biology have contributed to this accelerated progress. However, continued efforts to translate tissue engineering strategies into clinical therapies have been hampered by the problems associated with scaling up laboratory methods to produce large, complex tissues. The significant challenges faced by tissue engineers include the production of an intact vasculature within a tissue-engineered construct and recapitulation of the size and complexity of a whole organ. Here we review the basic components necessary for bioengineering organs – biomaterials, cells and bioactive molecules–and discuss various approaches for augmenting these principles to achieve organ level tissue engineering. Ultimately, the successful translation of tissue-engineered constructs into everyday clinical practice will depend upon the ability of the tissue engineer to “scale up” every aspect of the research and development process.  相似文献   

5.
The field of tissue engineering has made considerable strides since it was first described in the late 1980s. The advent and subsequent boom in stem cell biology, emergence of novel technologies for biomaterial development and further understanding of developmental biology have contributed to this accelerated progress. However, continued efforts to translate tissue-engineering strategies into clinical therapies have been hampered by the problems associated with scaling up laboratory methods to produce large, complex tissues. The significant challenges faced by tissue engineers include the production of an intact vasculature within a tissue-engineered construct and recapitulation of the size and complexity of a whole organ. Here we review the basic components necessary for bioengineering organs-biomaterials, cells and bioactive molecules-and discuss various approaches for augmenting these principles to achieve organ level tissue engineering. Ultimately, the successful translation of tissue-engineered constructs into everyday clinical practice will depend upon the ability of the tissue engineer to "scale up" every aspect of the research and development process.  相似文献   

6.
Mee MT  Wang HH 《Molecular bioSystems》2012,8(10):2470-2483
Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology.  相似文献   

7.
Sheets of embryonic epithelial cells coordinate their efforts to create diverse tissue structures such as pits, grooves, tubes, and capsules that lead to organ formation. Such cells can use a number of cell behaviors including contractility, proliferation, and directed movement to create these structures. By contrast, tissue engineers and researchers in regenerative medicine seeking to produce organs for repair or replacement therapy can combine cells with synthetic polymeric scaffolds. Tissue engineers try to achieve these goals by shaping scaffold geometry in such a way that cells embedded within these scaffold self-assemble to form a tissue, for instance aligning to synthetic fibers, and assembling native extracellular matrix to form the desired tissue-like structure. Although self-assembly is a dominant process that guides tissue assembly both within the embryo and within artificial tissue constructs, we know little about these critical processes. Here, we compare and contrast strategies of tissue assembly used by embryos to those used by engineers during epithelial morphogenesis and highlight opportunities for future applications of developmental biology in the field of tissue engineering.  相似文献   

8.
Synthetic biology employs rational engineering principles to build biological systems from the libraries of standard, well characterized biological parts. Biological systems designed and built by synthetic biologists fulfill a plethora of useful purposes, ranging from better healthcare and energy production to biomanufacturing. Recent advancements in the synthesis, assembly and “booting-up” of synthetic genomes and in low and high-throughput genome engineering have paved the way for engineering on the genome-wide scale. One of the key goals of genome engineering is the construction of minimal genomes consisting solely of essential genes (genes indispensable for survival of living organisms). Besides serving as a toolbox to understand the universal principles of life, the cell encoded by minimal genome could be used to build a stringently controlled “cell factory” with a desired phenotype. This review provides an update on recent advances in the genome-scale engineering with particular emphasis on the engineering of minimal genomes. Furthermore, it presents an ongoing discussion to the scientific community for better suitability of minimal or robust cells for industrial applications.  相似文献   

9.
Biomaterials are already widely used in medical sciences. The field of biomaterials began to shift to produce materials able to stimulate specific cellular responses at the molecular level. The combined efforts of cell biologists, engineers, materials scientists, mathematicians, geneticists, and clinicians are now used in tissue engineering to restore, maintain, or improve tissue functions or organs. This rapidly expanding approach combines the fields of material sciences and cell biology for the molecular design of polymeric scaffolds with appropriate 3D configuration and biological responses. Future developments for new blood vessels will require improvements in technology of materials and biotechnology together with the increased knowledge of the interactions between materials, blood, and living tissues. Biomaterials represent a crucial mainstay for all these studies.  相似文献   

10.
The production of bioinspired and biomimetic constructs has fostered much collaboration between biologists and engineers, although the extent of biological accuracy employed in the designs produced has not always been a priority. Even the exact definitions of "bioinspired" and "biomimetic" differ among biologists, engineers, and industrial designers, leading to confusion regarding the level of integration and replication of biological principles and physiology. By any name, biologically-inspired mechanical constructs have become an increasingly important research tool in experimental biology, offering the opportunity to focus research by creating model organisms that can be easily manipulated to fill a desired parameter space of structural and functional repertoires. Innovative researchers with both biological and engineering backgrounds have found ways to use bioinspired models to explore the biomechanics of organisms from all kingdoms to answer a variety of different questions. Bringing together these biologists and engineers will hopefully result in an open discourse of techniques and fruitful collaborations for experimental and industrial endeavors.  相似文献   

11.
Synthetic biology through biomolecular design and engineering   总被引:1,自引:0,他引:1  
Synthetic biology is a rapidly growing field that has emerged in a global, multidisciplinary effort among biologists, chemists, engineers, physicists, and mathematicians. Broadly, the field has two complementary goals: To improve understanding of biological systems through mimicry and to produce bio-orthogonal systems with new functions. Here we review the area specifically with reference to the concept of synthetic biology space, that is, a hierarchy of components for, and approaches to generating new synthetic and functional systems to test, advance, and apply our understanding of biological systems. In keeping with this issue of Current Opinion in Structural Biology, we focus largely on the design and engineering of biomolecule-based components and systems.  相似文献   

12.
This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.  相似文献   

13.
The objective of the courses which this syllabus describes is to expose developmental biologists to embryo culture and embryo manipulation techniques and applications in quantitative analyses. The laboratory program complements classroom teaching by exposure to both inductive and deductive methodologies. Developmental biology teaching requires good background in cell biology, molecular biology and genetics. Developmental biology research requires computer literacy and an aptitude for quantitative methodology and graphics.  相似文献   

14.
Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves input from chemical engineers, molecular biologists, biochemists, physiologists, and analytical chemists. Obviously, molecular biology is central in the production of novel products, as well as in the improvement of existing processes. However, in the latter case, input from other disciplines is pivotal in order to target the genetic modifications; with the rapid developments in molecular biology, progress in the field is likely to be limited by procedures to identify the optimal genetic changes. Identification of the optimal genetic changes often requires a meticulous mapping of the cellular metabolism at different operating conditions, and the application of metabolic engineering to process optimization is, therefore, expected mainly to have an impact on the improvement of processes where yield, productivity, and titer are important design factors, i.e., in the production of metabolites and industrial enzymes. Despite the prospect of obtaining major improvement through metabolic engineering, this approach is, however, not expected to completely replace the classical approach to strain improvement-random mutagenesis followed by screening. Identification of the optimal genetic changes for improvement of a given process requires analysis of the underlying mechanisms, at best, at the molecular level. To reveal these mechanisms a number of different techniques may be applied: (1) detailed physiological studies, (2) metabolic flux analysis (MFA), (3) metabolic control analysis (MCA), (4) thermodynamic analysis of pathways, and (5) kinetic modeling. In this article, these different techniques are discussed and their applications to the analysis of different processes are illustrated.  相似文献   

15.
By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization.  相似文献   

16.
Vincent JP 《Cell》2003,112(6):745-749
Molecular genetics has been key in allowing developmental biologists to uncover many of the molecules that participate in pattern formation. Cell biology is now beginning to help developmental biologists in their quest to understand how these molecules interact within cells to direct tissue behavior. This is particularly true in the areas of membrane trafficking and cell motility. Recent work has shown that various trafficking events such as secretion, endocytosis, segregation in membrane microdomains, intracellular transport, and targeting to lysosomes regulate various signaling pathways. It is likely that within the context of an embryo, these trafficking events are integrated such that secreted factors reliably orchestrate many developmental decisions.  相似文献   

17.
Conclusion: Scientists qua engineers Of all the scientists discussed by Mitman, Keller, and Taylor, Odum stands out most as the technocrat, the social engineer. But less obvious candidates, like Allee, also fancied themselves in this capacity: Our task as biologists and as citizens of a civilized country, is a practical engineering job. Allee had in mind the establishment of an international cooperative order based on his biological principles. He apparently did not recognize the extent to which his principles were themselves an engineering feat: he had already constructed a world in which eternal peace and order were possible.To an engineer in the traditional sense, the world is changeable, but not in all respects; there are constraints, and these constraints are taken very seriously. Scientists acting as engineers, in the traditional sense, must also pay attention to constraints. But scientists sometimes also take the option of engineering the very constraints, intellectually reconstructing the world so that it can (supposedly) be physically manipulated in the desired direction. There seems to be a lot of engineering, in the extended sense, going on in the very interesting stories that Mitman, Keller, and Taylor tell.  相似文献   

18.
Know-how and know-why in biochemical engineering   总被引:3,自引:0,他引:3  
This contribution analyzes the position of biochemical engineering in general and bioprocess engineering particularly in the force fields between fundamental science and applications, and between academia and industry. By using culture technology as an example, it can be shown that bioprocess engineering has moved slowly but steadily from an empirical art concerned with mainly know-how to a science elucidating the know-why of culture behavior. Highly powerful monitoring tools enable biochemical engineers to understand and explain quantitatively the activity of cellular culture on a metabolic basis. Among these monitoring tools are not just semi-online analyses of culture broth by HPLC, GC and FIA, but, increasingly, also noninvasive methods such as midrange IR, Raman and capacitance spectroscopy, as well as online calorimetry. The detailed and quantitative insight into the metabolome and the fluxome that bioprocess engineers are establishing offers an unprecedented opportunity for building bridges between molecular biology and engineering biosciences. Thus, one of the major tasks of biochemical engineering sciences is not developing new know-how for industrial applications, but elucidating the know-why in biochemical engineering by conducting research on the underlying scientific fundamentals.  相似文献   

19.
Edited by Alessandro Minelli and Thomas Pradeu, Towards a Theory of Development gathers essays by biologists and philosophers, which display a diversity of theoretical perspectives. The discussions not only cover the state of art, but broaden our vision of what development includes and provide pointers for future research. Interestingly, all contributors agree that explanations should not just be gene-centered, and virtually none use design and other engineering metaphors to articulate principles of cellular and organismal organization. I comment in particular on the issue of how to construe the notion of a ‘theory’ and whether developmental biology has or should aspire to have theories, which four of the contributions discuss in detail while taking opposing positions. Beyond construing a theory in terms of its empirical content (established knowledge about biological phenomena), my aim is to shift the focus toward the role that theories have for guiding future scientific theorizing and practice. Such a conception of ‘theory’ is particularly important in the context of development, because arriving at a theoretical framework that provides guidance for the discipline of developmental biology as a whole is more plausible than a unified representation of development across all taxa.  相似文献   

20.
Developmental biology, like many other areas of biology, has undergone a dramatic shift in the perspective from which developmental processes are viewed. Instead of focusing on the actions of a handful of genes or functional RNAs, we now consider the interactions of large functional gene networks and study how these complex systems orchestrate the unfolding of an organism, from gametes to adult. Developmental biologists are beginning to realize that understanding ontogeny on this scale requires the utilization of computational methods to capture, store and represent the knowledge we have about the underlying processes. Here we review the use of the Gene Ontology (GO) to study developmental biology. We describe the organization and structure of the GO and illustrate some of the ways we use it to capture the current understanding of many common developmental processes. We also discuss ways in which gene product annotations using the GO have been used to ask and answer developmental questions in a variety of model developmental systems. We provide suggestions as to how the GO might be used in more powerful ways to address questions about development. Our goal is to provide developmental biologists with enough background about the GO that they can begin to think about how they might use the ontology efficiently and in the most powerful ways possible. Mol. Reprod. Dev. 77: 314–329, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号