首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukotriene B4 and late asthmatic reactions induced by toluene diisocyanate   总被引:1,自引:0,他引:1  
We investigated whether leukotriene B4 (LTB4) is released from the lungs of sensitized subjects during asthmatic reactions induced by toluene diisocyanate (TDI). We examined three groups of TDI-sensitized subjects, one after no exposure to TDI, the second 8 h after an exposure to TDI that caused an early asthmatic reaction, and the third 8 h after an exposure to TDI that caused a late asthmatic reaction. We analyzed bronchoalveolar lavage (BAL) fluid by reverse-phase high-performance liquid chromatography and by specific radioimmunoassay. The mean concentration of LTB4 was higher [0.31 +/- 0.09 (SE) ng/ml, range 0.15-0.51] in BAL fluid of sensitized subjects who developed a late asthmatic reaction than in BAL fluid of subjects who developed an early asthmatic reaction (0.05 +/- 0.04 ng/ml, range 0-0.224), and no LTB4 was detectable in the control subjects. We also performed BAL 8 h after TDI exposure on four TDI-sensitized late-dual reactors who were on steroid treatment. In this group of subjects no LTB4 was detectable. These results suggest that LTB4 may be involved in late asthmatic reactions induced by TDI.  相似文献   

2.
Matrix metalloproteinase (MMP)-9 plays an important role in the pathogenesis of bronchial asthma. Neovastat, having significant antitumor and antimetastatic properties, is classified as a naturally occurring multifunctional antiangiogenic agent. We evaluated the therapeutic effect of Neovastat on airway inflammation in a mouse model of asthma. BALB/c mice were immunized subcutaneously with ovalbumin (OVA) on days 0, 7, 14, and 21 and challenged with inhaled OVA on days 26, 29, and 31. Neovastat was administrated by gavage (5 mg/kg body weight) three times with 12 h intervals, beginning 30 min before OVA inhalation. On day 32, mice were challenged with inhaled methacholine, and enhanced pause (Penh) was measured as an index of airway hyperresponsiveness. The severity of airway inflammation was determined by differential cell count of bronchoalveolar lavage (BAL) fluid. The MMP-9 concentration in BAL fluid samples was measured by ELISA, and MMP-9 activity was measured by zymography. The untreated asthma group showed an increased inflammatory cell count in BAL fluid and Penh value compared with the normal control group. Mice treated with Neovastat had significantly reduced Penh values and inflammatory cell counts in BAL fluid compared with untreated asthmatic mice. Furthermore, mice treated with Neovastat showed significantly reduced MMP-9 concentrations and activity in BAL fluid. These results demonstrate that Neovastat might have new therapeutic potential for airway asthmatic inflammation.  相似文献   

3.
Jung WK  Lee DY  Choi YH  Yea SS  Choi I  Park SG  Seo SK  Lee SW  Lee CM  Kim SK  Jeon YJ  Choi IW 《Life sciences》2008,82(13-14):797-805
Caffeic acid phenethyl ester (CAPE) is a biologically active ingredient of propolis, which has several interesting biological properties, including antioxidant and anti-inflammatory; however, its anti-allergic effects are poorly understood. The objective of this study was to determine whether treatment with CAPE results in significant inhibition of asthmatic reactions in a mouse model. Mice sensitized and challenged with ovalbumin (OVA) had the following typical asthmatic reactions: an increase in the number of eosinophils in bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways, and airway luminal narrowing; the development of airway hyperresponsiveness (AHR); the presence of tumor necrosis factor-alpha (TNF-alpha) and Th2 cytokines, including IL-4 and IL-5, in the BAL fluid; and the presence of allergen-specific IgE in the serum. Five successive intraperitoneal administrations of CAPE before the last airway OVA challenge resulted in significant inhibition of characteristic asthmatic reactions. We determined that increased generation of reactive oxygen species (ROS) by inhalation of OVA was diminished via the administration of CAPE in BAL fluid, as well as nuclear factor-kappaB (NF-kappaB) DNA binding activity. These findings indicate that oxidative stress may have a crucial function in the pathogenesis of bronchial asthma, and that CAPE may be useful as an adjuvant therapy for the treatment of bronchial asthma.  相似文献   

4.

Background

Reactive oxygen species and tissue remodeling regulators, such as metalloproteinases (MMPs) and their inhibitors (TIMPs), are thought to be involved in the development of pulmonary fibrosis. We investigated these factors in the fibrotic response to bleomycin of p47phox -/- (KO) mice, deficient for ROS production through the NADPH-oxidase pathway.

Methods

Mice are administered by intranasal instillation of 0.1 mg bleomycin. Either 24 h or 14 days after, mice were anesthetized and underwent either bronchoalveolar lavage (BAL) or lung removal.

Results

BAL cells from bleomycin treated WT mice showed enhanced ROS production after PMA stimulation, whereas no change was observed with BAL cells from p47phox -/- mice. At day 1, the bleomycin-induced acute inflammatory response (increased neutrophil count and MMP-9 activity in the BAL fluid) was strikingly greater in KO than wild-type (WT) mice, while IL-6 levels increased significantly more in the latter. Hydroxyproline assays in the lung tissue 14 days after bleomycin administration revealed the absence of collagen deposition in the lungs of the KO mice, which had significantly lower hydroxyproline levels than the WT mice. The MMP-9/TIMP-1 ratio did not change at day 1 after bleomycin administration in WT mice, but increased significantly in the KO mice. By day 14, the ratio fell significantly from baseline in both strains, but more in the WT than KO strains.

Conclusions

These results suggest that NADPH-oxidase-derived ROS are essential to the development of pulmonary fibrosis. The absence of collagen deposition in KO mice seems to be associated with an elevated MMP-9/TIMP-1 ratio in the lungs. This finding highlights the importance of metalloproteinases and protease/anti-protease imbalances in pulmonary fibrosis.  相似文献   

5.
Rats were subjected to acute lung injury by the intra-alveolar formation of IgG immune complexes of bovine serum albumin (BSA) and anti-BSA. In this model of injury, complement activation occurs and large numbers of neutrophils invade the interstitium and alveolar space. In the present study, animals were treated with intratracheal catalase concomitantly with anti-BSA or after a lag period of 5-120 min. Catalase treatment at time-zero or at 5 min post injury failed to prevent lung injury as indicated by permeability change, histological features, and neutrophil influx. However, treatment after a delay of 15-30 min (but not 120 min) afforded substantial protection. Consistent with past findings [19], lung injury was accompanied by an accumulation of matrix metalloproteinase 9 (MMP-9) in bronchoalveolar lavage (BAL) fluid. There was a strong correlation between inhibition of injury and reduction in MMP-9 levels. In vitro studies conducted in parallel revealed that unstimulated alveolar macrophages did not produce measurable MMP-9, while there was a large induction following exposure to the same immune complexes that initiated injury in vivo. MMP-2 was also slightly upregulated under the same conditions. Concomitant treatment with catalase greatly inhibited MMP-9 production by macrophages in response to immune complexes, but this treatment had little effect on basal production of either MMP-9 or MMP-2 by macrophage. The same concentration of catalase that suppressed MMP-9 elaboration also inhibited the production of tumor necrosis factor alpha. In contrast, when neutrophils were treated with catalase and then exposed to immune complexes, the antioxidant failed to prevent the release of either MMP-2 or MMP-9. Taken together, these findings demonstrate that antioxidant treatment interferes with elaboration of MMPs by alveolar macrophages. Protection against lung injury is correlated with reduction in MMP levels in the BAL fluid.  相似文献   

6.
Chronic obstructive pulmonary disease (COPD) is an inflammatory process characterized by airway mucus hypersecretion. Previous studies have reported that lipopolysaccharides (LPS) stimulate mucin 5AC (MUC5AC) production via epidermal growth factor receptor (EGFR) in human airway cells. Moreover, this production was shown to depend on the expression and activity of matrix metalloproteinase 9 (MMP-9), which is increased in COPD patients’ serum. In the present study we investigated the signaling pathway mediating LPS-stimulated secretion and activation of MMP-9, and the regulatory effects of this pathway on the production of MUC5AC in the human airway cells NCI-H292. Using specific inhibitors, we found that LPS-stimulated cells secreted and activated MMP-9 via EGFR. Our results also indicate that signaling events downstream of EGFR involved PI3K-dependent activation of Rac1, which mediated the NADPH-generated reactive oxygen species responsible for MMP-9 secretion and activation. Finally, we observed that EGFR/PI3K/Rac1/NADPH/ROS/MMP-9 regulate MUC5AC production in LPS-challenged NCI-H292 cells.  相似文献   

7.
Oxidative stress in the lung is important in the pathogenesis of COPD. Published data indicate that glucocorticoids inhibit blood cells in their capacity to produce reactive oxygen species (ROS). We investigated the effect of Fluticasone propionate (FP) on the ROS production capabilities of pulmonary cells. Bronchoalveolar lavage (BAL) was performed in smoking COPD patients, before and after a six month, placebo-controlled treatment with FP. BAL cells were stimulated with phorbol myristrate acetate (PMA) alone, and together with superoxide dismutase (SOD). From kinetic plots of ferricytochrome-c conversion we calculated the maximal rate of superoxide production: V(max). We also examined BAL cell subsets and performed correlation analyses on ROS production and relevant clinical determinants. Paired results were obtained from 6 FP- and 9 placebo-treated patients. No significant change of V(max) was found in both patient groups. Also BAL cellularity was unchanged. Correlation analyses showed a significant (inverse) association of V(max) with the number of cigarettes smoked per day. We concluded that a potent inhaled glucocorticoid had no effect on the ROS production capability of BAL cells from smoking COPD patients. Apparently, heavy smoking impaired the ability of alveolar macrophages to produce ROS, which was not further decreased by FP.  相似文献   

8.
To investigate simultaneously localization and relative activity of MMPs during extracellular matrix (ECM) remodeling in bleomycin-induced pulmonary fibrosis in rat, we analyzed the time course of the expression, activity and/or concentration of gelatinases MMP-2 and MMP-9, collagenase MMP-1, matrylisin MMP-7, TIMP-1 and TIMP-2, both in alveolar space (cellular and extracellular compartments) and in lung tissue. MMP and TIMP expression was detected (immunohistochemistry) in lung tissue. MMP activity (zymography) and TIMP concentration (ELISA) were evaluated in lung tissue homogenate (LTH), BAL supernatant (BALs) and BAL cell pellet (BALp) 3, 7, 14, and 28 days after bleomycin intratracheal instillation. Immunohistochemistry showed an extensive MMP and TIMP expression from day 7 in a wide range of structural and inflammatory cells in treated rats. MMP-2 was present mainly in epithelia, MMP-9 in inflammatory cells. MMP-2 and MMP-9 activity was increased respectively in BAL fluid and BAL cells, with a peak at day 7. TIMP-1 and TIMP-2 concentration (ELISA) enhancement was delayed at day 14. In conclusion gelatinases and their inhibitors are significantly activated during bleomycin-induced pulmonary fibrosis. Marked changes in gelatinases activity are observed early in the alveolar compartment, with a prevailing extracellular activity of MMP-2 and a predominant intracellular distribution of MMP-9, while enzyme activity changes in lung parenchyma were less evident. In the repairing phase the reduction of gelatinases activity is synchronous with a peak of alveolar concentration of their inhibitors.  相似文献   

9.
Recently, matrix metalloproteinases (MMPs) are emerging as important molecules in neuroinflammation as well as neuronal cell death. However, the role of MMPs in activated microglia remains unclear. In the present study, we found that expressions of MMP-1, -3, -8 and -9 were significantly induced by single or combined treatment of immunostimulants lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) in primary cultured microglia and BV2 microglial cells. Inhibition of MMP-3 or -9 significantly suppressed the expression of iNOS and pro-inflammatory cytokines and the activities of NF-κB, AP-1, and MAPK in LPS-stimulated microglia. The results suggest that MMP-3 and -9 both mediate LPS-induced inflammatory reactions. Inhibition of reactive oxygen species (ROS) by N-acetyl-cysteine or diphenylene iodonium significantly suppressed the expression of MMP-3, MMP-9, NO and TNF-α in LPS-stimulated microglia, suggesting that ROS is an early signaling inducer in LPS-stimulated microglial cells. MMP inhibitors also suppressed ROS production, suggesting a cross-talk between ROS and MMPs. Collectively, the present study demonstrates that MMP-3 and MMP-9 play a role as inflammatory mediators in activated microglia. Pharmacological intervention of MMPs especially MMP-3 and -9 would be a therapeutic strategy for the treatment of inflammatory diseases in the CNS caused by over-activation of microglial cells.  相似文献   

10.
(-)-Epigallocatechin-3-gallate (EGCG), a major constituent of green tea polyphenols, has been shown to suppress cancer cell proliferation and induce apoptosis. In this study we investigated its efficacy and the mechanism underlying its effect using human B lymphoblastoid cell line Ramos, and effect of co-treatment with EGCG and a chemotherapeutic agent on apoptotic cell death. EGCG induced dose- and time-dependent apoptotic cell death accompanied by loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, and cleavage of pro-caspase-9 to its active form. EGCG also enhanced production of intracellular reactive oxygen species (ROS). Pretreatment with diphenylene iodonium chloride, an inhibitor of NAD(P)H oxidase and an antioxidant, partially suppressed both EGCG-induced apoptosis and production of ROS, implying that oxidative stress is involved in the apoptotic response. Furthermore, we showed that combined-treatment with EGCG and a chemotherapeutic agent, etoposide, synergistically induced apoptosis in Ramos cells.  相似文献   

11.
12.
We examined the effects of prolonged hyperoxia (75% O(2)) on lung structure and collagen metabolism in the subacute phase of lung injury induced by continuous infusion of endotoxin (LPS) in a rat model. Experimental groups included control, endotoxin alone, endotoxin plus hyperoxia, and hyperoxia alone. Endotoxin-treated rats received a bolus of LPS (10 mg/kg i.v.) followed by 500 microg.kg(-1).day(-1) in continuous infusion for 10 days. The bronchoalveolar lavage (BAL) fluid/plasma albumin concentration ratio, an index of capillary permeability, and neutrophil and macrophage counts in BAL fluid were highest in the endotoxin plus hyperoxia group. On pathological examination, prolonged hyperoxia exacerbated destruction of the alveolar wall and caused most prominent emphysematous changes in the endotoxin plus hyperoxia group. Lung tissue hydroxyproline concentration was significantly decreased in the hyperoxia group and increased in the endotoxin group. The latent forms of MMP-2 and MMP-9 increased in BAL fluid of the endotoxin- and/or hyperoxia-treated groups, whereas the activities of collagenase and gelatinase, and the active form of MMP-2 were all increased in the hyperoxia-treated groups. Added to endotoxin, prolonged hyperoxia degraded collagen, the major structural component of basement membranes, and caused emphysematous changes associated with activation of collagenase and MMP-2. Our observations suggest that, in the subacute phase of endotoxin-induced lung injury, prolonged hyperoxia causes pulmonary emphysematous changes with persistent injury to the alveolar capillary barrier. Collagenase and MMP-2 activated by hyperoxia, together with MMP-9, may play prominent roles in disruption of the alveolar basement membranes and degradation of collagen lining the alveolar walls.  相似文献   

13.
14.
Green tea polyphenol (?)-epigallocatechin gallate (EGCG) has been reported to reduce neuronal damage after cerebral ischemic insult. EGCG is known to reduce matrix metalloproteinase (MMP) activity. MMP can play an important role in the pathophysiology of neurological disorders including cerebral ischemia. The purpose of the current study was to investigate whether EGCG shows an inhibitory effect on MMP activity and neural tissue damage following transient focal cerebral ischemia. In the present study, C57BL/6 mice were subjected to 80 min of focal ischemia induced by middle cerebral artery occlusion (MCAO). Animals were killed 24 h after ischemia. EGCG (50 mg/kg) was administered intraperitoneally immediately after ischemia. Gelatin gel zymography showed an increase in the active form of MMP-9 after ischemia. EGCG reduced ischemia-induced up-regulation of the active form of MMP-9. In in situ zymography, EGCG reduced up-regulation of gelatinase activity induced by cerebral ischemia. Co-incubation with EGCG reduced gelatinase activity directly in postischemic brain section. In 2,3,5-triphenyltetrazolium chloride (TTC) assay, brain infarction was remarkable in the middle cerebral artery territory after focal cerebral ischemia. In EGCG-treated mice, infarct volume was significantly reduced compared with vehicle-treated mice. These results demonstrate that EGCG, a green tea polyphenol, may reduce up-regulation of MMP-9 activity and neuronal damage following transient focal cerebral ischemia. In addition to its antioxidant effect, MMP-9 inhibition might be a possible mechanism potentially involved in the neuroprotective effect of a green tea polyphenol, EGCG.  相似文献   

15.
16.
Matrix metalloproteinases (MMPs) are a family of extracellular proteases that are responsible for the degradation of the extracellular matrix during tissue remodeling. We have used a mouse model of allergen-induced airway remodeling to determine whether MMP-9 plays a role in airway remodeling. MMP-9-deficient and wild-type (WT) mice were repetitively challenged intranasally with ovalbumin (OVA) antigen to develop features of airway remodeling including peribronchial fibrosis and increased thickness of the peribronchial smooth muscle layer. OVA-challenged MMP-9-deficient mice had less peribronchial fibrosis and total lung collagen compared with OVA-challenged WT mice. There was no reduction in mucus expression, smooth muscle thickness, or airway responsiveness in OVA-challenged MMP-9-deficient compared with OVA-challenged WT mice. OVA-challenged MMP-9-deficient mice had reduced levels of bronchoalveolar lavage (BAL) regulated on activation, normal T cell expressed, and secreted (RANTES), as well as reduced numbers of BAL and peribronchial eosinophils compared with OVA-challenged WT mice. There were no significant difference in levels of BAL eotaxin, thymus- and activation-regulated chemokine (TARC), or macrophage-derived chemokine (MDC) in OVA-challenged WT compared with MMP-9-deficient mice. Overall, this study demonstrates that MMP-9 may play a role in mediating selected aspects of allergen-induced airway remodeling (i.e., modest reduction in levels of peribronchial fibrosis) but does not play a significant role in mucus expression, smooth muscle thickness, or airway responsiveness.  相似文献   

17.
Matrix metalloproteinases (MMPs) are a large family of endopeptidases that proteolytically degrade extracellular matrix. Many different cells produce MMP-9, and levels have been shown to be up-regulated in patients with allergic asthma. The aim of this study was to investigate the in vivo role of MMP-9 during allergen-induced airway inflammation. Acute allergic pulmonary eosinophilia was established in MMP-9 knockout (KO) and wild-type (WT) control mice by sensitization and challenge with OVA. Cell recruitment was significantly increased in both bronchoalveolar lavage (BAL) and lung tissue compartments in MMP-9 KO mice compared with WT mice. This heightened cell recruitment was primarily due to increased eosinophils and Th2 cells in the BAL and lung tissue of MMP-9 KO mice in comparison with WT controls. Moreover, levels of the Th2 cytokines, IL-4 and IL-13, and the chemokines eotaxin/CCL11 and macrophage-derived chemokine/CCL22 were substantially increased in MMP-9 KO mice compared with WT after OVA challenge. Resolution of eosinophilia was similar between MMP-9 KO and WT mice, but Th2 cells persisted in BAL and lungs of MMP-9 KO mice for longer than in WT mice. Our results indicate that MMP-9 is critically involved in the recruitment of eosinophils and Th2 cells to the lung following allergen challenge, and suggest that MMP-9 plays a role in the development of Th2 responses to allergen.  相似文献   

18.
Rhinovirus infections are the major cause of asthma exacerbations. We hypothesised that IL-15, a cytokine implicated in innate and acquired antiviral immunity, may be deficient in asthma and important in the pathogenesis of asthma exacerbations. We investigated regulation of IL-15 induction by rhinovirus in human macrophages in vitro, IL-15 levels in bronchoalveolar lavage (BAL) fluid and IL-15 induction by rhinovirus in BAL macrophages from asthmatic and control subjects, and related these to outcomes of infection in vivo. Rhinovirus induced IL-15 in macrophages was replication-, NF-κB- and α/β interferon-dependent. BAL macrophage IL-15 induction by rhinovirus was impaired in asthmatics and inversely related to lower respiratory symptom severity during experimental rhinovirus infection. IL-15 levels in BAL fluid were also decreased in asthmatics and inversely related with airway hyperresponsiveness and with virus load during in vivo rhinovirus infection. Deficient IL-15 production in asthma may be important in the pathogenesis of asthma exacerbations.  相似文献   

19.
The inhibitory mechanism of tea catechins for allergy remains undefined. We studied the effect of catechins, mainly EGCG, on the activation of mast cell line canine cutaneous mastocytoma cells (CM-MC). Compound 48/80 induced the degranulation in CM-MC dose dependently, whereas its release of beta-hexosaminidase was inhibited by EGCG and O-methylated EGCG (EGCG-Me). Both catechins were found to inhibit intracellular ROS generation dose dependently together with DPI. Intracellular ROS generation in human polymorphonuclear leukocytes was also inhibited by EGCG. Neither L-NAME, ebeselen nor NAC inhibited ROS generation. From the Western blot analysis of the subunits components of NADPH oxidase, we detected cytosolic subunits; p47(phox), p67(phox), p40(phox), rac2 and membrane subunits; gp91(phox), p22(phox) in CM-MC. Cytosolic subunits were translocated from cytosol to membrane time dependently after stimulation with compound 48/80. EGCG and DPI inhibited cytosolic subunits from translocating into membrane. These data suggest that EGCG inhibits the activation of NADPH oxidase in CM-MC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号