首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown previously that the convexity (curvature or rate of bending) of the photosynthetic light response curve was strongly correlated with chlorophyll content in shade acclimated conifer needles (Leverenz 1987, Physiol. Plant. 71: 20–29), in agreement with an hypothesis that gradients of light within leaves affect the convexity. In the present study it is shown that the convexity at any given chlorophyll content can be altered when leaves of Pinus sylvestris L. Picea glauca (Muench), Picea mariana (M.II.) BS.P. and Picea abies (L.) Karst pre-treated with less shade. This probably induced a differential acclimation of cells on the top and bottom sides of the leaves to their local light environment. Leaves were illuminated on i) their top surface, ii) their bottom surface, or iii) uniformly in a light integrating sphere during measurements of photosynthesis. After shoots had been transferred from their growth environment to a new measuring environment, the convexity increased from the first to the second day towards a maximum of 0.97. The rate of increase towards this maximum was 55 to 62% per day and probably is the result of re-acclimation of cells within the leaves. The data shown that the act of measuring photosynthesis induces a significant alteration in the experimental material when measurements are made for more than one day.
The convexity of the light response curve of photosynthesis, was independent of whether the steady state measurements were made beginning in the dark and sequentially increasing photon flux density or beginning at high light and sequentially lowering photon flux density. Neither variation of CO2 concentration from 35 to 200 Pa, nor of temperature from 5° to 32°C affected the convexity.  相似文献   

2.
Picea abies (L.) Karst. plants, propagated by cuttings, were subjected to one night of freezing temperatures (-5°C), high irradiance (1 200 or 1 800 μmol m−2 s−1), or freezing temperatures followed by high irradiance. The treatments were applied at bud burst, at time of shoot elongation, and when the shoots had ceased to elongate. The maximum quantum yield of photosynthesis, Fv/Fm, dry weight of branches and needles, and length and survival of shoots were measured. Fv/Fm and growth decreased after a night of freezing temperatures followed by high irradiance, at the time of bud burst and shoot elongation. High irradiance alone influenced Fv/Fm, but not growth. Freezing temperatures affected Fv/Fm, and growth at the time of shoot elongation. F0 increased after a night of freezing temperatures and decreased with age of the current-year needles. It was concluded that the use of short-term measurements of chlorophyll fluorescence induction to predict changes in growth after a night of frost and subsequent high light was not a reliable method.  相似文献   

3.
The effects of photon flux density and temperature on net photosynthesis and transpiration rates of mature and immature leaves of three-year-old Japanese larch Larix kaempferi (Lamb.) Sarg. trees were determined with an infrared, differential open gas analysis system. Net photosynthetic response to increasing photon flux densities was similar for different foliage positions and stage of maturity. Light compensation was between 25 and 50 μmol m−2 s−1. Rates of photosynthesis increased rapidly at photon flux densities above the compensation level and became saturated between 800 and 1000 μmol m−2 s−1. Transpiration rates at constant temperature likewise increased with increasing photon flux density, and leveled off between 800 and 1000 μmol m−2 s−1. Photosynthetic response to temperature was determined in saturating light and was similar for all foliage positions; it increased steadily from low temperatures to an optimum range betweeen 15 and 21°C and then decreased rapidly above 21°C. Transpiration rate, however, increased continuously with rising temperature up to the experimental maximum. CO2 compensation concentrations for mature foliage varied between 58 and 59 μl l−1; however, foliage borne at the apex of the terminal leader compensated at 75 μl l−1. None of these data support the claim that Japanese larch possesses C4 photosynthetic characteristics.  相似文献   

4.
The functioning of the photosynthetic apparatus during leaf senescence was investigated in alstroemeria cut flowers by a combination of gas-exchange measurements and analysis of in vivo chlorophyll fluorescence. Chlorophyll loss in leaves of alstroemeria cut flowers is delayed by light and by a treatment of the cut flowers with gibberellic acid (GA3). The maximal photosynthesis of the leaves was approximately 6 μmol CO2 m−2 s−1 at I 350 μmol m−2 s−1 (PAR) which is relatively low for intact C3 leaves. Qualitatively the gas-exchange rates followed the decline in chlorophyll content for the various treatments, i.e. light and GA3-treatment delayed the decline in photosynthetic rates. However, when chlorophyll loss could not yet be observed in the leaves, photosynthetic rates were already strongly decreased. In vivo fluorescence measurements revealed that the decrease in CO2 uptake is (partly) due to a decreased electron flow through photosystem II. Furthermore, analysis of the fluorescence data showed a high nonphotochemical quenching under all experimental conditions, indicating that the consumption of reducing power in the Calvin cycle is very low. The chlorophyll, remaining after 9 days incubation of leaves with GA3 in the dark should be considered as a 'cosmetic' pigment without any function in the supply of assimilates to the flowers.  相似文献   

5.
To test for the effects of far‐red light on preventing budset in Picea abies , seedlings of six populations originating from latitudes between 67°N and 47°N were grown for 4–8 weeks in continuous incandescent (metal halogen) light at 300 µmol m−2 s−1 and 20°C and then transferred, at the same temperature, to a daily regime of 8 h incandescent light (300 µmol m−2 s−1) followed by 16 h cool white fluorescent light (40 µmol m−2 s−1). (Cool white lamps are deficient in far‐red light, with a R/FR ratio of 7.5 compared with 2.0 for the incandescent lamps.) All the seedlings from 67° and 80% of those from 64° stopped extension growth and set terminal buds within 28 days of the change of regime. The seedlings from 61° and further south continued growing, as did control seedlings from 67° grown as above but with incandescent light at 20 µmol m−2 s−1 replacing cool white illumination. To distinguish between a clinal and ecotypic pattern of variation, the interval between 64° and 59° was investigated by growing populations originating from that area in the same regimes as before. After 28 days in the cool white day‐extension regime, the percentage budset was 86 for the population from 64°, 0 for the population from 59° and 25–50 for the intermediate populations; i.e. the populations showed a clinal variation in requirement for far‐red light according to latitude. Thus northern populations of Picea abies appear to behave as 'light‐dominant' plants for the photoperiodic control of extension growth and budset, whereas the more southern populations behave as 'dark‐dominant' plants.  相似文献   

6.
The floating angiosperm Lemna gibba L. was exposed for 2 h to various combinations of photosynthetic photon flux densities and temperature. The extent of photoinhibition of photosynthesis was assayed by measuring the net CO2 uptake before and after a photoinhibitory treatment, and the time course for photoinhibition was studied. It was found that the maximum quantum yield and the light-saturated rate of CO2 uptake were affected by the interaction between light and temperature during the photoinhibitory treatment. At a constant photon flux density of 650 μmol m−2 s−1 the extent of photoinhibition increased with decreasing temperature showing that even a chilling-resistant plant like L. gibba is much more susceptible to photoinhibition at chilling temperatures. About 60% photoinhibition of the quantum yield for CO2 uptake could be obtained either by a high photon flux density of 1 750 μmol m−2 s−1 and 25°C or by a moderate photon flux density of 650 μmol m−2 s−1 and 3°C. The time courses of recovery from 60% photoinhibition produced by either of these two treatments were similar, indicating that the nature of the photoinhibition was intrinsically similar. The extent of photoinhibition was related to the amount of light absorbed in excess to what could be handled by photosynthesis at that temperature. The vital importance of photosynthesis in alleviating photoinhibition is discussed.  相似文献   

7.
Periphyton production in Fort River, Massachusetts   总被引:4,自引:0,他引:4  
SUMMARY. The primary production and general ecology of a periphyton community of a New England, lowland stream were studied over a seventeen-month period. Temperature, light, periphyton chlorophyll-α, and community structure were monitored regularly. Seasonally distinct chlorophyll peaks coincided with the light maximum in early May, just prior to the appearance of leaves of riparian trees, and again in autumn after terrestrial leaf fall. During midwinter, despite low light and temperature levels and high stream discharge, mean chlorophyll concentrations remained similar to summer values.
A mathematical expression relating periphyton photosynthesis per unit chlorophyll-α to temperature, light and periphyton density was established with submersible light-dark chambers in situ . Survey data collected over the study period were employed in the empirical equation to estimate seasonal variations in periphyton primary production. Weekly mean daily estimates of periphyton gross production ranged from < 0.1 g O2 m−2, during midwinter, to 6.5 g O2 m−2 during early May. Estimated annual periphyton gross production and respiration were 0.58 and 1.27 kg O2 m−2, respectively. Factors influencing seasonal variations of Fort River periphyton standing crop are discussed.  相似文献   

8.
  An experiment was conducted on intact algal assemblages of stream periphyton to test their response to fluctuating and constant light regimes having the same mean intensity. The light regimes (in μmol·m−2·s−1) were constant light at 100, light fluctuating between 50 and 150 with a period of 5 min, and light fluctuating between 10 and 460 with periods of either 4:1 or 8:2 min. Compared to the rates measured under 100 in μmol·m−2·s−1 constant light conditions, fluctuations ranging between 50 and 150 in μmol·m−2·s−1 with a 5-min period produced a 23% greater rate of photosynthesis. Conversely, fluctuations between 10 and 460 in μmol·m−2·s−1 led to a 59%–74% decrease in photosynthetic activity. Detailed examination of periphytic algal responses to fluctuating light revealed that higher light intensities produced steeper photosynthesis/time slopes, but it was the combined interaction with lower light intensity that ultimately determined overall photosynthetic rate for a given light regime. This study offers compelling evidence that variable light regimes have important consequences for algal photosynthesis in natural streams.  相似文献   

9.
Abstract. Plantago maritima L. was grown at three levels of salinity, 50, 200, 350 mol m−3 NaCl, and the effects on growth, ion content and photosynthetic capacity were studied. Shoot and root dry weight, leaf production and leaf length were all substantially reduced in plants grown at high salinity. Total leaf area of plants grown at 350 mol m−3 NaCl was only 20% of that in plants at low salinity. Both the Na+ and K+ content of leaves and roots increased with external salinity. There was no change in the Na+/K+ ratio of leaves or roots at different salinity levels. Despite the large reductions in growth and high accumulation of Na+ ions, leaf photosynthetic rate was only slightly reduced by salinity stress. The reduction in photosynthesis was not caused by reduced biochemical capacity as judged by photosynthetic response to intercellular CO2 and by ribulose-1,5-bisphosphate carboxylase activity, but was due to reduced leaf conductance and low intercellular CO2 concentration. The increased stomatal limitation of photosynthesis resulted in higher water-use efficiency of plants grown at high salinity.  相似文献   

10.
Carotenoids play critical roles in both light harvesting and energy dissipation for the protection of photosynthetic structures. However, limited research is available on the impact of irradiance on the production of secondary plant compounds, such as carotenoid pigments. Kale ( Brassica oleracea L.) and spinach ( Spinacia oleracea L.) are two leafy vegetables high in lutein and β-carotene carotenoids. The objectives of this study were to determine the effects of different irradiance levels on tissue biomass, elemental nutrient concentrations, and lutein β-carotene and chlorophyll (chl) pigment accumulation in the leaves of kale and spinach. 'Winterbor' kale and 'Melody' spinach were grown in nutrient solution culture in growth chambers at average irradiance levels of 125, 200, 335, 460, and 620 μmol m−2 s−1. Highest tissue lutein β-carotene and chls occurred at 335 μmol m−2 s−1 for kale, and 200 μmol m−2 s−1 for spinach. The accumulations of lutein and β-carotene were significantly different among irradiance levels for kale, but were not significantly different for spinach. However, lutein and β-carotene accumulation was significant for spinach when computed on a dry mass basis. Identifying effects of irradiance on carotenoid accumulation in kale and spinach is important information for growers producing these crops for dry capsule supplements and fresh markets.  相似文献   

11.
The response of photosynthesis to absorbed light by intact leaves of wild-type ( Hordeum vulgare L. cv. Gunilla) and chlorophyll b -less barley ( H. vulgare L. cv. Dornaria, chlorina-f22800) was measured in a light integrating sphere. Up to the section where the light response curve bends most sharply the responses of the b -less and wild-type barley were similar but not identical. Average quantum yield and convexity for the mutant light response curves were 0.89 and 0.90, respectively, times those of the wild-type barley. The maximum quantum yield for PSII photochemistry was also 10% lower as indicated by fluorescence induction kinetics (Fv/Fm). Just above the region where the light curve bends most sharply, photosynthesis decreased with time in the mutant but not in the wild-type barley. This decrease was associated with a decrease in Fv/Fm indicating photoinhibition of PSII. This photoinhibition occurred in the same region of the light response curve where zeaxanthin formation occurs. Zeaxanthin formation occurred in both the chlorophyll b -less and wild-type leaves. However, the epoxidation state was lower in the mutant than in the wild-type barley. The results indicate that chlorophyll b -less mutants will have reduced photosynthetic production as a result of an increased sensitivity to photoinhibition and possibly a lowered quantum yield and convexity in the absence of photoinhibition.  相似文献   

12.
We studied photosynthetic and stomatal responses of grain sorghum ( Sorghum bicolor [L.] Moench cv. Pioneer 8500), soybean ( Glycine max L. cv. Flyer) and eastern gamagrass ( Tripsacum dactyloides L.) during experimental sun and shade periods simulating summer cloud cover. Leaf gas exchange measurements of field plants showed that short-term (5 min) shading of leaves to 300–400 μmol m−2 s−1 photosynthetic photon flux density reduced photosynthesis, leaf temperature, stomatal conductance, transpiration and water use efficiency and increased intercellular CO2 partial pressure. In all species, photosynthetic recovery was delayed when leaves were reilluminated, apparently by stomatal closure. The strongest stomatal response was in soybean. Photosynthetic recovery was studied further with soybeans grown indoors (maximum photosynthetic photon flux density 1 200 μmol m−2 s−1). Plants grown indoors had responses to shade similar to those of field plants, except for brief nonstomatal limitation immediately after reillumination. These responses indicated the importance of the light environment during leaf development on assimilation responses to variable light, and suggested different limitations on carbon assimilation in different parts of the soybean canopy. Photosynthetic oxygen evolution recovered immediately upon reillumination, indicating that the light reactions did not limit soybean photosynthetic recovery. While shade periods caused stomatal closure and reduced carbon gain and water loss in all species, the consequences for carbon gain/water loss were greatest in soybean. The occurrence of stomatal closure in all three species may arise from their shared phenologies and herbaceous growth forms.  相似文献   

13.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

14.
Spirogyra Link (1820) is an anabranched filamentous green alga that forms free-floating mats in shallow waters. It occurs widely in static waters such as ponds and ditches, sheltered littoral areas of lakes, and stow-flowing streams. Field observations of its seasonal distribution suggest that the 70-μm-wide filament form of Spirogyra should have a cool temperature and high irradiance optimum for net photosynthesis. Measurements of net photosynthesis and respiration were marie at 58 combinations of tight and temperature in a controlled environment facility. Optimum conditions were 25°C and 1500 μmol photons m−2 s−1, at which net photosynthesis averaged 75.7 mg O2 gdm−1 h−1. Net photosynthesis was positive at temperatures from 5° to 35°C at most irradiances except at combinations of extremely low irradiances and high temperatures (7 and 23 μmol photons m−2 s−1 at 30°C and 7, 23, and 35 μmol photons m−2 s−1 at 35°C). Respiration rates increased with both temperature and prior irradiance. Light-enhanced respiration rates were significantly greater than dark respiration rates following irradiances of 750 μmol photons m−2 s−1 or greater. Polynomials were fitted to the data to generate response surfaces; such response surfaces can be used to represent net photosynthesis and respiration in ecological models. The data indicate that the alga can tolerate the cool water and high irradiances characteristic of early spring but cannot maintain positive net photosynthesis under conditions of high temperature and low light (e.g. when exposed to self-shading ).  相似文献   

15.
Clark L1, a normal green soybean [ Glycine max (L.) Merrill] and Clark y9y9, a backross-developed isoline exhibiting pigment deficiency, were grown under continuous red (11 W m−2 and far-red (9 W m−2) light. Chloroplast thylakoids from the unifoliolate leaf (9–10 days old) were isolated and analyzed for pigments, pigment-protein, membrane polypeptides, electron transport and ultrastructural differences. Chloroplasts of soybean plants grown under far-red light have decreased chlorophyll a to chlorophyll b ratio, increased light-harvesting complexes, and grana structure with few stroma-type thylakoids. Photosystem II/photosystem I ratios (PSII/PSI) are higher in far-red due to decreased synthesis of PSI reaction center and/or less antenna associated with PSI.  相似文献   

16.
Senescence of isolated leaves of Hydrilla verticillata (L.f.) Royle was studied in both darkness and light (20 μmol m−2 s−1). Senescence in the dark followed a general pattern of deterioration, i.e., gradual loss of cellular macromolecules like chlorophyll, protein and RNA with a concomitant rise in α-amino nitrogen, protease activity and tissue permeability. In light, however, an accelerated loss of chlorophyll took place although protein loss and increase in protease activity were retarded. A higher level of α-amino nitrogen in leaves in the light than in darkness could be correlated with lower leaching of free amino acids in light. Light decreased tissue permeability, as evidenced by lower conductivity of the incubation medium. In the light, RNA increased over the initial level. Both soluble and insoluble carbohydrates declined in the dark. The decline of insoluble carbohydrate was retarded by light, whereas soluble carbohydrate showed an initial rise and then declined sharply in the light.  相似文献   

17.
Given the influence of photoperiod on reproductive development and whole-plant senescence in monocarpic plants, one would suspect that leaf senescence in these plants might be under photoperiodic control. In Arabidopsis thaliana , which is monocarpic and also a nonobligate long-day (LD) plant, LDs (16 h, 300 μmol m−2 s−1) caused leaves to die earlier than did short days (SDs, 10 h). Since leaf longevity was not paralleled by the reproductive development in the present study, the reproductive structures did not seem to be the primary controls of leaf senescence. The LD effect appeared to depend on the amount of light rather than on day length, for leaves given LDs at reduced light intensity (180 μmol m−2 s−1) lived longer than those in LDs with full light. In addition, the higher light intensity promoted chlorophyll loss and anthocyanin accumulation in LDs. Thus, senescence of these leaves seems to be governed by light dosage rather than photoperiod. Light may play a natural role in promoting the senescence of A. thaliana leaves.  相似文献   

18.
Photosynthesis in ozone-exposed duckweed (Lemna gibba)   总被引:2,自引:0,他引:2  
The photosynthetic light saturation curve in duckweed was lowered by 20–25% after ozone exposure (300 nmol mol−1, 1 h). The light flux and oxygen concentration during ozone-exposure had no effect on reduction of net photosynthesis. Net photosynthesis and photorespiration were both depressed by about 40% after exposure for 1 h to 360 nmol mol−1 ozone. We could not find any change in dark respiration after ozone exposure below 300 nmol mol−1. When the concentration of ozone was doubled from 150 nmol mol−1 to 300 nmol mol−1, the uptake of ozone in duckweed changed from 100 nmol m−2 s−1 to 170 nmol m−2 s−1. We found no differences in fluorescence (pattern) between ozone treated plants and the control plants during a period of 150 min after ozone treatment, but there was an increase in synthesis of the Dl-protein and a significant reduction in degradation after ozone treatment (300 nmol mol−1, 1 h). These results, together with fluorescence measurements, indicate that photochemical electron transport was not responsible for the ozone-induced reduction in net photosynthesis.  相似文献   

19.
Mechanism of copper-enhanced photoinhibition in thylakoid membranes   总被引:2,自引:0,他引:2  
The effect of copper on photoinhibition of photosystem II (PSII) in vitro was studied in bean ( Phaseolus vulgaris L. cv. Dufrix) and pumpkin ( Cucurbita pepo L.) thylakoids. The thylakoids were illuminated at 200–2 000 μmol photons m−2 s−1 in the presence of 70–1 830 added Cu2+ ions per PSII. Three lines of evidence show that the irreversible damage of PSII caused by illumination of thylakoids in the presence of Cu2+ was mainly due to donor-side photoinhibition resulting from inhibition of the PSII donor side by Cu2+. First, addition of an artificial electron donor partially restored PSII activity of thylakoids that had been illuminated in the presence of Cu2+. Second, already moderate light was enough to cause rapid inhibition of PSII, and the inhibition could be saturated by light. Third, the extrinsic polypeptides of the oxygen-evolving complex were found to become oxidized by the combined effect of Cu2+ and light. The presence of oxygen was not necessary for the copper-induced enhancement of photoinhibition of PSII. When the illumination was prolonged, copper caused a gradual collapse of the thylakoid structure by increasing degradation of thylakoid proteins.  相似文献   

20.
Abstract. Poplar shoots ( Populus euramericana L.) obtained from cuttings were exposed for 6 or 8 weeks to NH3 concentrations of 50 and 100 μgm−3 or filtered air in fumigation chambers. After this exposure the rates of NH3 uptake, transpiration, CO2 assimilation and respiration of leaves were measured using a leaf chamber. During the long-term exposure also modulated chlorophyll fluorescence measurements were carried out to obtain information about the photosynthetic performance of individual leaves. Both fluorescence and leaf chamber measurements showed a higher photosynthetic activity of leaves exposed to 100 μg NH3 m−3. These leaves showed also a larger leaf conductance and a larger uptake rate of NH3 than leaves exposed to 50 μg m−3 NH3 or filtered air. The long-term NH3 exposure did not induce an internal resistance against NH3 transport in the leaf, nor did it affect the leaf cuticle. So, not only at a short time exposure, but also at a long-term exposure NH3 uptake into leaves can be calculated from data on the boundary layer and stomatal resistance for H2O and ambient NH3-concentration. Furthermore, the NH3 exposure had no effect on the relation between CO2-assimilation and stomatal conductance, indicating that NH3 in concentrations up to 100 μg m−3 has no direct effect on stomatal behaviour; for example, by affecting the guard or contiguous cells of the stomata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号