首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies have demonstrated various strain differences between Giardia isolates, but little is known about the immunology and pathogenesis of infections. This study aimed to compare host responses to strains of Giardi duodenalis differing in levels of virulence and pathogenicity and, by doing so, elucidate the mechanisms via which pathogenic strains establish infections. Marked differences were found in the infection dynamics, histopathological responses and serum antibody responses of neonatal mice infected with either G. duodenalis strain BRIS/83/HEPU/106 (isolated from a human) or BRIS/95/HEPU/2041 (isolated from a sulphur-crested cockatoo, Cacatua galerita). Infections with the bird strain were more intense (6.7-times greater) and persisted longer (by 14days) than infections with the human strain. The bird strain was more pathogenic and caused greater pathophysiological alteration to the gut mucosa, including increased villous atrophy, hyperplasia of goblet cells and vacuolated epithelial cells. Mice infected with the bird strain produced less serum anti-Giardia IgA and IgM, but more total (non-specific) serum IgA than those infected with the human strain of Giardia. This suggests that avian G. duodenalis strains are infective for mammalian hosts and may contribute to zoonotic infections. Furthermore, infection of mice with BRIS/95/HEPU/2041 serves as a good experimental model to provide further insight into the mechanisms via which G. duodenalis causes disease.  相似文献   

2.
Parasite richness and prevalence in wild animals can be used as indicators of population and ecosystem health. In this study, the gastrointestinal parasites of ursine colobus monkeys (Colobus vellerosus) at the Boabeng‐Fiema Monkey Sanctuary (BFMS), Ghana, were investigated. BFMS is a sacred grove where monkeys and humans have long lived in relatively peaceful proximity. Fecal samples (n = 109) were collected opportunistically from >27 adult and subadult males in six bisexual groups and one all‐male band from July 2004 to August 2005. Using fecal floatation, we detected three protozoans (two Entamoeba sp., Isospora sp.), five nematodes (Ascaris sp., Enterobius sp., Trichuris sp., two strongyle sp.), and one digenean trematode. Using fluorescein labeled antibodies, we detected an additional protozoan (Giardia sp.), and with PCR techniques, we characterized this as G. duodenalis Assemblage B and also identified a protistan (Blastocystis sp., subtype 2). The most prevalent parasite species were G. duodenalis and Trichuris sp. Parasites were more prevalent in the long wet season than the long dry. Parasite prevalence did not vary by age, and average parasite richness did not differ by rank for males whose status remained unchanged. However, males that changed rank tended to show higher average parasite richness when they were lower ranked. Individuals that spent more time near human settlements had a higher prevalence of Isospora sp. that morphologically resembled the human species I. belli. The presence of this parasite and G. duodenalis Assemblage B indicates possible anthropozoonotic and/or zoonotic transmission between humans and colobus monkeys at this site. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Giardia duodenalis is an intestinal parasite of many vertebrates. The presence of G. duodenalis in the marine environment due to anthropogenic and wildlife activity is well documented, including the contributions from untreated sewage and storm water, agricultural run-off and droppings from terrestrial animals. Recently, studies have detected this protistan parasite in the faeces of marine vertebrates such as whales, dolphins, seals and shore birds. To explore the population biology of G. duodenalis in marine life, we determined the prevalence of G. duodenalis in two species of seal (Halichoerus grypus, Phoca vitulina vitulina and Phoca vitulina richardsi) from the east and west coasts of the USA, sequenced two loci from G. duodenalis-positive samples to assess molecular diversity and examined G. duodenalis distribution amongst these seals and other marine vertebrates along the east coast. We found a significant difference in the presence of G. duodenalis between east and west coast seal species. Only the zoonotic lineages of G. duodenalis, Assemblages A and B and a novel lineage, which we designated as Assemblage H, were identified in marine vertebrates. Assemblages A and B are broadly distributed geographically and show a lack of host specificity. Only grey seal (Halichoerus grypus) samples and one gull sample (Larus argentatus) from a northern location of Cape Cod, Massachusetts, USA, showed the presence of Assemblage H haplotypes; only one other study of harbour seals from the Puget Sound region of Washington, USA previously recorded the presence of an Assemblage H haplotype. Assemblage H sequences form a monophyletic clade that appears as divergent from the other seven Assemblages of G. duodenalis as these assemblages are from each other. The discovery of a previously uncharacterised lineage of G. duodenalis suggests that this parasite has more genetic diversity and perhaps a larger host range than previously believed.  相似文献   

4.
Giardia duodenalis a species complex of gastrointestinal protists, with assemblages A and B infective to humans. To date, post-genomic proteomics are largely derived from Assemblage A, biasing understanding of parasite biology. To address this gap, we quantitatively analysed the proteomes of trophozoites from the genome reference and two clinical Assemblage B isolates, revealing lower spectrum-to-peptide matches in non-reference isolates, resulting in significant losses in peptide and protein identifications, and indicating significant intra-assemblage variation. We also explored differential protein expression between in vitro cultured subpopulations putatively enriched for dividing and feeding cells, respectively. This data is an important proteomic baseline for Assemblage B, highlighting proteomic differences between physiological states, and unique differences relative to Assemblage A.  相似文献   

5.
6.
ABSTRACT. The nucleotide sequence of the 16S rRNA gene, part of the 23S rRNA gene and the spacer DNA region was determined for Giardia duodenalis , obtained from humans in The Netherlands (AMC-4) and Washington State (CM). These rDNA sequences differ from other G. duodenalis isolates (Portland-1 and BRIS/83/HEPU/106) both of which have virtually identical rDNA sequences. The most characteristic feature was found close to the 5'end of the 16S rRNA. The Portland-1 - Bris/83/HEPU/106 type has GCG in position 22–24, while AMC-4 and CM have AUC in this position. These two sequences, present in an otherwise conserved region of the 16S rRNA, are "signature" sequences, which divide Giardia isolates into two different groups.  相似文献   

7.
Giardia duodenalis is an important zoonotic pathogen, causes diarrhea in humans and animals worldwide. To date, few data are available on the prevalence of G. duodenalis in rabbits in China. In total, 955 fecal samples were collected from rabbits during 2008–2011 in Henan Province, Central China. The overall prevalence of G. duodenalis was 8.4% (80/955) on microscopic analysis, with the highest infection rate (11.3%) in rabbits aged 91–200 d. All G. duodenalis‐positive isolates were characterized at the small subunit ribosomal RNA, β‐giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase genes. Two assemblages and a mixed assemblage were detected in the rabbits: assemblage B (n = 26), assemblage E (n = 2), and a mixed assemblage of B and E (n = 4). Assemblage B isolates showed variability at the nucleotide sequences belonging to the so‐called subtype BIV, based on analysis of multiple genes. This is the first report of G. duodenalis assemblage E in rabbits, and one novel subtype of assemblage E was identified through sequence analysis of gdh and bg genes, respectively. Our data suggest that rabbits may be reservoirs of G. duodenalis cysts potentially infectious to humans.  相似文献   

8.
Despite a white‐tailed deer (WTD) population in the United States of approximately 32 million animals extremely little is known of the prevalence and species of the protists that infect these animals. This study was undertaken to determine the presence of potential human protist pathogens in culled WTD in central Maryland. Feces from fawns to adults were examined by molecular methods. The prevalence of Enterocytozoon bieneusi, Cryptosporidium, and Giardia was determined by PCR. All PCR‐positive specimens were sequenced to determine the species and genotype(s). Of specimens from 80 WTD, 26 (32.5%) contained 17 genotypes of E. bieneusi. Four genotypes were previously reported (I, J, WL4, LW1) and 13 novel genotypes were identified and named DeerEb1‐DeerEb13. Genotypes I, J, and LW1 are known to infect humans. Ten (12.5%) specimens contained the Cryptosporidium deer genotype, and one (1.25%) contained Giardia duodenalis Assemblage A. The identification zoonotic G. duodenalis Assemblage A as well as four E. bieneusi genotypes previously identified in humans suggest that WTD could play a role in the transmission of those parasites to humans.  相似文献   

9.
Aims: This study describes an approach for genotyping Giardia cysts obtained from wastewater treatment plants (WTPs) in Spain using real‐time PCR (qPCR) in combination with immunomagnetic beads. Methods and Results: A 50‐cycle amplification of a 74‐bp fragment of the Giardia beta‐giardin gene was adopted from a previous qPCR method. Additionally, two locked nucleic acid (LNA) probes were designed (LNA P434 P1 for assemblage A and LNA P434 H3 for assemblage B). All 16 wastewater samples analysed were positive with the immunofluorescence assay (IFA). Assemblage A was detected in all WTP samples using primer–LNA probe P434 P1 set. Giardia duodenalis identification was confirmed by PCR–RFLP analysis and sequencing of the β‐giardin gene in the water samples found positive by IFA and qPCR. Among the 16 assemblage A isolates that were sequenced, two subtypes were identified; 11 corresponded to the A2 subgenotype, whereas three corresponded to the subgenotype A3. A mixture of subgenotypes was found in the remaining two isolates. Conclusions: The newly developed qPCR assays were able to discern G. duodenalis assemblages A and B in wastewater. Significance and Impact of the Study: The real‐time PCR assays provided a rapid method for detection and one‐step genotyping of G. duodenalis from wastewater samples, and its application would contribute to understanding the distribution and abundance of G. duodenalis assemblages A and B in wastewater.  相似文献   

10.
Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate) trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1), suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.  相似文献   

11.
Three hundred and eighty six faecal specimens were randomly collected from 1- to 3-month-old lambs from 16 farms in Spain to investigate the presence of different genotypes of Giardia duodenalis. Individual specimens were examined by IFA (Immunofluorescence assay) and β-giardin PCR polymerase chain reaction. Cysts of G. duodenalis were shed by lambs in every flock analyzed, showing a prevalence by farms of 100%. The average prevalence of G. duodenalis for the 386 specimens was 42%, ranging from 8.3 to 80% depending on the farm. β-giardin PCR positive samples were sequenced to determine the genotypes present at each farm and seven new subtypes of β-giardin Assemblage E are reported in this study. In each farm, one to six different β-giardin subtypes were found, showing the high variability of the target. Also, one flock had the zoonotic Assemblage A. This is the first report of Giardia subgenotype A-1 in sheep in Spain.  相似文献   

12.
13.
Giardia duodenalis (syn. Giardia lamblia, Giardia intestinalis) is a protozoan organism that can infect the intestinal tract of many animal species including mammals. Genetic heterogeneity of G. duodenalis is well described but the zoonotic potential is still not clear. In this study, we analysed 100 Giardia DNA samples directly isolated from human stool specimens, to get more insight in the different G. duodenalis assemblages present in the Dutch human population. Results showed that these human isolates could be divided into two main Assemblages A and B within the G. duodenalis group on the basis of PCR assays specific for the Assemblages A and B and the DNA sequences of 18S ribosomal RNA and the glutamate dehydrogenase (gdh) genes. Genotyping results showed that G. duodenalis isolates originating from Dutch human patients belonged in 35% of the cases to Assemblage A (34/98) and in 65% of the cases to Assemblage B (64/98) whereas two human cases remained negative in all assays tested. In addition, we compared these human samples with animal samples from the Netherlands and human and animal samples from other countries. A phylogenetic analysis was carried out on the DNA sequences obtained from these Giardia and those available in GenBank. Using gdh DNA sequence analysis, human and animal Assemblage A and B Giardia isolates could be identified. However, phylogenetic analysis revealed different sub-clustering for human and animal isolates where host-species-specific assemblages (C, D, E, F and G) could be identified. The geographic origin of the human and animal samples was not a discriminating factor.  相似文献   

14.
Plasmodium falciparum virulence is linked to its ability to sequester in post‐capillary venules in the human host. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is the main variant surface antigen implicated in this process. Complete loss of parasite adhesion is linked to a large subtelomeric deletion on chromosome 9 in a number of laboratory strains such as D10 and T9‐96. Similar to the cytoadherent reference line FCR3, D10 strain expresses PfEMP1 on the surface of parasitized erythrocytes, however without any detectable cytoadhesion. To investigate which of the deleted subtelomeric genes may be implicated in parasite adhesion, we selected 12 genes for D10 complementation studies that are predicted to code for proteins exported to the red blood cell. We identified a novel single copy gene (PF3D7_0936500) restricted to P. falciparum that restores adhesion to CD36, termed here virulence‐associated protein 1 (Pfvap1). Protein knockdown and gene knockout experiments confirmed a role of PfVAP1 in the adhesion process in FCR3 parasites. PfVAP1 is co‐exported with PfEMP1 into the host cell via vesicle‐like structures called Maurer's clefts. This study identifies a novel highly conserved parasite molecule that contributes to parasite virulence possibly by assisting PfEMP1 to establish functional adhesion at the host cell surface.  相似文献   

15.
The protozoan parasite Giardia lamblia is an important causative agent of acute or chronic diarrhoea in humans and various animals. During infection, the parasite survives the hosts reactions by undergoing continuous antigenic variation of its major surface antigen, named VSP (variant surface protein). The VSPs form a unique family of cysteine-rich proteins that are extremely heterogeneous in size. The relevance of antigenic variation for the survival in the host has been most successfully studied by performing experimental infections in a combined mother/offspring mouse system and by using the G. lamblia clone GS/M-83-H7 (human isolate) as model parasite. In-vivo antigenic variation of G. lamblia clone GS/M-83-H7 is characterised by a diversification of the intestinal parasite population into a complex mixture of different variant antigen types. It could be shown that maternally transferred lactogenic anti-VSP IgA antibodies exhibit cytotoxic activity on the Giardia variant-specific trophozoites in suckling mice, and thus express a modulatory function on the proliferative parasite population characteristics. Complementarily, in-vitro as well as in-vivo experiments in adult animals indicated that non-immunological factors such as intestinal proteases may interfere into the process of antigen variation in that they favour proliferation of those variant antigen-type populations which resist the hostile physiological conditions within the intestine. These observations suggest that an interplay between immunological and physiological factors, rather than one of these two factor alone, modulates antigenic diversification of a G. lamblia population within an experimental murine host and thus influences the survival rate and strategy of the parasite.  相似文献   

16.

Background  

Giardia duodenalis is a ubiquitous protozoan parasite that has emerged as a significant opportunistic human pathogen. G. duodenalis may have a deleterious effect on animal growth and performance, therefore its potential as a production limiting organism should not be discounted. We therefore undertook this study to determine management and environmental factors in feedlots that influence the prevalence and environmental load of G. duodenalis cysts in fecal material deposited by feedlot cattle in the central and western United States.  相似文献   

17.
18.
Giardia intestinalis is a cosmopolitan protozoan parasite that can infect a range of animals, including dairy cattle. As information regarding the prevalence and genotyping of G. intestinalis infection in dairy cattle in northwestern China is limited, 2,945 feces samples from 1,224 dairy cattle in Gansu Province and from 1,614 in Ningxia Hui Autonomous Region (NXHAR) were examined between December 2012 and March 2014. The overall prevalence of G. intestinalis was 3.63% (107/2,945), with 2.63% and 4.38% in Gansu and NXHAR, respectively. Logistic regression analysis showed region, age and season to be significant risk factors for G. intestinalis infection. Assemblage analysis identified 106 assemblage E and one assemblage A at the triose phosphate isomerase (tpi) locus in this study. Intravariations were also detected at tpi, glutamate dehydrogenase (gdh) and beta giardin (bg) loci within assemblage E, showing seven, three, and five new subtypes, respectively. Moreover, 13 new multilocus genotypes (E20‐E32) were observed in assemblage E. Effective strategies and measures should be taken to prevent and control giardiasis in Gansu and NXHAR.  相似文献   

19.
Cryptosporidium and Giardia are ubiquitous protozoan parasites that infect a broad range of hosts. The presence of Cryptosporidium spp. and G. duodenalis was detected in 355 fecal samples of laboratory experimental rats from four experimental rat rearing facilities in China by PCR amplification of the small subunit (SSU) rRNA gene. The G. duodenalis positive samples were further characterized in the β-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi) genes. The overall infection rates of Cryptosporidium spp. and G. duodenalis were 0.6% (2/355) and 9.3% (33/355), respectively, with no co-infection. Among the four facilities, only the rats in Zhengzhou1 were found positive for the two pathogens. Undetermined Cryptosporidium genotype was observed in one sample and C. ubiquitum in another sample. Assemblage G was identified in all the 33 G. duodenalis positive isolates at SSU rRNA gene, out of which 19, 20, and 21 isolates were also subtyped as assemblage G at tpi, gdh and bg gens, respectively. To our knowledge, this is the first report of Cryptosporidium and G. duodenalis infections in laboratory experimental rats in China. The infections of these pathogens in laboratory animals should be monitored routinely since they may interfere the biological experiments in these animals.  相似文献   

20.
Giardia duodenalis is an important protozoan parasite that is known to be zoonotic. To assess the potential zoonotic transmission of giardiasis from dogs and to identify genetic diversity of G. duodenalis in dog populations, we examined the infection rate and genotypes of G. duodenalis in both pet dogs (from pet dog farms, pet shops, pet hospitals, pet markets) and stray dogs of different ages in Henan Province, China. A total of 940 fresh fecal specimens were collected from 2007 to 2013 in Henan Province. The overall infection rate of G. duodenalis was 14.3% (134/940) as determined by microscopy, with the highest infection rate (17.3%) observed in dogs from shelters. Young dogs were more likely to be infected with G. duodenalis than adult dogs, and G. duodenalis cysts were found more frequently in diarrheic dogs. All G. duodenalis-positive isolates were characterized at the triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh), and β-giardin (bg) loci, and 37, 51, and 48 sequences were obtained, respectively. The dog-specific assemblages C and D were identified using multi-locus sequence analysis. Six novel sequences of the tpi locus, one novel sequence of the gdh locus and two novel sequences of the bg locus were detected among the G. duodenalis assemblage C isolates, while two novel sequences of the gdh locus were found among the G. duodenalis assemblage D isolates. Our data indicate that G. duodenalis is a common parasite and cause of diarrheal disease in dogs in Henan Province. However, there was no evidence for zoonotic G. duodenalis assemblages in the study population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号