首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7+ satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration.  相似文献   

2.
Difficulties related to the obtainment of stem/progenitor cells from skeletal muscle tissue make the search for new sources of myogenic cells highly relevant. Alveolar mucosa might be considered as a perspective candidate due to availability and high proliferative capacity of its cells. Human alveolar mucosa cells (AMC) were obtained from gingival biopsy samples collected from 10 healthy donors and cultured up to 10 passages. AMC matched the generally accepted multipotent mesenchymal stromal cells criteria and possess population doubling time, caryotype and immunophenotype stability during long-term cultivation. The single myogenic induction of primary cell cultures resulted in differentiation of AMC into multinucleated myotubes. The myogenic differentiation was associated with expression of skeletal muscle markers: skeletal myosin, skeletal actin, myogenin and MyoD1. Efficiency of myogenic differentiation in AMC cultures was similar to that in skeletal muscle cells. Furthermore, some of differentiated myotubes exhibited contractions in vitro. Our data confirms the sufficiently high myogenic potential and proliferative capacity of AMC and their ability to maintain in vitro proliferation-competent myogenic precursor cells regardless of the passage number.  相似文献   

3.
The interaction between mammary epithelial and stromal tissue is considered to be important in breast tissue development. In this study, we developed a transplantation procedure for the mammary stromal fibroblastic cell line (MSF) to examine its life in vivo. First we established MSF cells which stably expressed lacZ (lacZ/MSF) and had characteristics of mammary stromal cells. The lacZ/MSF cells were then transplanted into a cleared mammary fat pad of syngenic mice with and without mammary primary epithelial organoids. Whole mount X-gal and carmine staining of the transplants revealed that a number of undifferentiated lacZ/MSF cells survived around the mammary epithelial tissue when transplanted with organoids. These results indicate that transplantation of MSF cells into mammary fat pad was accomplished by co-transplantation with primary mammary organoids. Finally, we discuss the application of transplantation procedure for in vivo studies of the mammary stromal tissue development and stromal-epithelial interactions.  相似文献   

4.
5.
Saturated free fatty acids (FFAs) act as lipid mediators and induce insulin resistance in skeletal muscle. Specifically, in obesity‐related diseases such as type 2 diabetes, FFAs directly reduce insulin sensitivity and glucose uptake in skeletal muscle. However, the knowledge of how FFAs mediate inflammation and subsequent tissue disorders, including fibrosis in skeletal muscle, is limited. FFAs are a natural ligand for toll‐like receptor 2 (TLR2) and TLR4, and induce chronic low‐grade inflammation that directly stimulates skeletal muscle tissue. However, persistent inflammatory stimulation in tissues could induce pro‐fibrogenic processes that ultimately lead to perturbation of the tissue architecture and dysfunction. Therefore, blocking the link between inflammatory primed skeletal muscle tissue and connective tissue might be an efficient therapeutic option for treating obesity‐induced muscle inactivity. In this study, we investigated the impact of conditioned medium obtained from human palatine tonsil‐derived mesenchymal stem cells (T‐MSCs) on the interaction between skeletal muscle cells stimulated with palmitic acid (PA) and fibroblasts. We found that PA‐treated skeletal muscle cells actively secreted interleukin‐1β (IL‐1β) and augmented the migration, proliferation and expression of fibronectin in L929 fibroblasts. Furthermore, T‐CM inhibited the skeletal muscle cell‐derived pro‐fibrogenic effect via the production of the interleukin‐1 receptor antagonist (IL‐1Ra), which is an inhibitor of IL‐1 signalling. Taken together, our data provide novel insights into the therapeutic potential of T‐MSC‐mediated therapy for the treatment of pathophysiological processes that occur in skeletal muscle tissues under chronic inflammatory conditions.  相似文献   

6.
Bone marrow stromal cells are multipotent and have been shown to differentiate into a wide variety of mesenchymal cell types in vivo. In this study we tested the ability of bovine bone marrow stromal cells to contribute to the development of porcine skeletal muscle tissue. Fetal pigs were injected early in gestation with bone marrow stem cells originating from slaughtered steers. After approximately forty days of development the fetuses were harvested and sections of their skeletal muscle were analyzed for the presence of bovine cells. PCR was used to detect bovine DNA present in DNA extracted from the fetal pig skeletal muscle. We also used a PRINS (Oligonucleotide Primed In- Situ Synthesis) protocol to confirm the presence of bovine cells within the porcine skeletal muscle tissue sections. The results of both assays indicate that bovine bone marrow stromal cells can participate in the development of porcine skeletal muscle. This study helps to demonstrate the potential that bone marrow stromal cells have to contribute to advances in animal biotechnology and medicine.  相似文献   

7.
Imaging MS is a powerful technique that combines the chemical and spatial analysis of surfaces. It allows spatial localization of multiple different compounds that are recorded in parallel without the need of a label. It is currently one of the rapidly developing techniques in the proteomics toolbox. Different complementary imaging MS methods, i.e. MALDI and secondary ion MS imaging for direct tissue analysis, can be applied on exactly the same tissue sample. This allows the identification of small molecules, peptides and proteins present on the same sample surface. Sample preparation is crucial to obtain high quality, reliable and reproducible complementary molecular images. It is essential to optimize the conditions for each step in the sample preparation protocol, ranging from sample collection and storage to surface modification. In this article, we review and discuss the importance of correct sample treatment in case of MALDI and secondary ion MS imaging experiments and describe the experimental requirements for optimal sample preparation.  相似文献   

8.
The damage of the skeletal muscle prompts a complex and coordinated response that involves the interactions of many different cell populations and promotes inflammation, vascular remodeling and finally muscle regeneration. Muscle disorders exist in which the irreversible loss of tissue integrity and function is linked to defective neo-angiogenesis with persistence of tissue necrosis and inflammation. Here we show that macrophages (MPs) are necessary for efficient vascular remodeling in the injured muscle. In particular, MPs sustain the differentiation of endothelial-derived progenitors to contribute to neo-capillary formation, by secreting pro-angiogenic growth factors. When phagocyte infiltration is compromised endothelial-derived progenitors undergo a significant endothelial to mesenchymal transition (EndoMT), possibly triggered by the activation of transforming growth factor-β/bone morphogenetic protein signaling, collagen accumulates and the muscle is replaced by fibrotic tissue. Our findings provide new insights in EndoMT in the adult skeletal muscle, and suggest that endothelial cells in the skeletal muscle may represent a new target for therapeutic intervention in fibrotic diseases.  相似文献   

9.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has become a valuable tool to address a broad range of questions in many areas of biomedical research. One such application allows spectra to be obtained directly from intact tissues, termed "profiling" (low resolution) and "imaging" (high resolution). In light of the fact that MALDI tissue profiling allows over a thousand peptides and proteins to be rapidly detected from a variety of tissues, its application to disease processes is of special interest. For example, protein profiles from tumors may allow accurate prediction of tumor behavior, diagnosis, and prognosis and uncover etiologies underlying idiopathic diseases. MALDI MS, in conjunction with laser capture microdissection, is able to produce protein expression profiles from a relatively small number of cells from specific regions of heterogeneous tissue architectures. Imaging mass spectrometry enables the investigator to assess the spatial distribution of proteins, drugs, and their metabolites in intact tissues. This article provides an overview of several tissue profiling and imaging applications performed by MALDI MS, including sample preparation, matrix selection and application, histological staining prior to MALDI analysis, tissue profiling, imaging, and data analysis. Several applications represent direct translation of this technology to clinically relevant problems.  相似文献   

10.
骨骼肌良好的再生能力是由于肌卫星细胞的存在,然而肌卫星细胞的数量仅占骨骼肌细胞数量的1%~ 5%,当肌肉损伤时,仅依靠这些卫星细胞还不足以促进骨骼肌修复与再生,并且这种再生能力会随着年龄的增大而衰减,并不能修复损伤严重的骨骼肌。骨髓间充质干细胞(BMSC)因其多向分化潜能,旁分泌潜能,免疫调节能力及容易获取等特点广泛用于损伤骨骼肌的修复与再生。但在某种程度上,仅仅采用BMSC治疗损伤的骨骼肌仍不能达到满意的效果。因此,大量研究采用药物、生物材料、细胞及细胞因子对BMSC进行预处理不仅可改善它的移植率,还可显著促进其向骨骼肌分化,从而最大限度的发掘骨骼肌间充质干细胞的成肌分化潜能以促进骨骼肌的修复。因此,本篇综述旨在概括BMSC成肌分化在骨骼肌再生中的应用。  相似文献   

11.
BackgroundIn spite of the number of applications describing the use of MALDI MSI, one of its major drawbacks is the limited capability of identifying multiple compound classes directly on the same tissue section.MethodsWe demonstrate the use of grid-aided, parafilm-assisted microdissection to perform MALDI MS imaging and shotgun proteomics and metabolomics in a combined workflow and using only a single tissue section. The grid is generated by microspotting acid dye 25 using a piezoelectric microspotter, and this grid was used as a guide to locate regions of interest and as an aid during manual microdissection. Subjecting the dissected pieces to the modified Folch method allows to separate the metabolites from proteins. The proteins can then be subjected to digestion under controlled conditions to improve protein identification yields.ResultsThe proof of concept experiment on rat brain generated 162 and 140 metabolite assignments from three ROIs (cerebellum, hippocampus and midbrain/hypothalamus) in positive and negative modes, respectively, and 890, 1303 and 1059 unique proteins. Integrated metabolite and protein overrepresentation analysis identified pathways associated with the biological functions of each ROI, most of which were not identified when looking at the protein and metabolite lists individually.ConclusionsThis combined MALDI MS imaging and multi-omics approach further extends the amount of information that can be generated from single tissue sections.General significanceTo the best of our knowledge, this is the first report combining both imaging and multi-omics analyses in the same workflow and on the same tissue section.  相似文献   

12.
MALDI mass spectrometry can generate profiles that contain hundreds of biomolecular ions directly from tissue. Spatially-correlated analysis, MALDI imaging MS, can simultaneously reveal how each of these biomolecular ions varies in clinical tissue samples. The use of statistical data analysis tools to identify regions containing correlated mass spectrometry profiles is referred to as imaging MS-based molecular histology because of its ability to annotate tissues solely on the basis of the imaging MS data. Several reports have indicated that imaging MS-based molecular histology may be able to complement established histological and histochemical techniques by distinguishing between pathologies with overlapping/identical morphologies and revealing biomolecular intratumor heterogeneity. A data analysis pipeline that identifies regions of imaging MS datasets with correlated mass spectrometry profiles could lead to the development of novel methods for improved diagnosis (differentiating subgroups within distinct histological groups) and annotating the spatio-chemical makeup of tumors. Here it is demonstrated that highlighting the regions within imaging MS datasets whose mass spectrometry profiles were found to be correlated by five independent multivariate methods provides a consistently accurate summary of the spatio-chemical heterogeneity. The corroboration provided by using multiple multivariate methods, efficiently applied in an automated routine, provides assurance that the identified regions are indeed characterized by distinct mass spectrometry profiles, a crucial requirement for its development as a complementary histological tool. When simultaneously applied to imaging MS datasets from multiple patient samples of intermediate-grade myxofibrosarcoma, a heterogeneous soft tissue sarcoma, nodules with mass spectrometry profiles found to be distinct by five different multivariate methods were detected within morphologically identical regions of all patient tissue samples. To aid the further development of imaging MS based molecular histology as a complementary histological tool the Matlab code of the agreement analysis, instructions and a reduced dataset are included as supporting information.  相似文献   

13.
Rainbow trout Oncorhynchus mykiss were infiltrated with either saline or lidocaine adjacent to the dorsal fin to assess histopathological changes. Infiltration was done as if it were being used as a local anaesthetic. Tissue lesions and associated tissue healing were examined over a period of 30 days. Most changes occurred at the cranial site of where the solution was first infiltrated. The infiltration of a dose of 10 mg kg?1 of lidocaine appears to have damaged the skeletal muscle and connective tissues more than a similar volume of saline, especially during the first 15 days. The primary changes included haemorrhage, inflammation and muscle degeneration and necrosis. By day 30 post‐infiltration inflammatory lesions were either nearly or completely absent, signs of myofibre regeneration were noted in only one fish. This experiment shows local anaesthetics and saline can produce localized tissue damage, especially during the first 2 weeks post infiltration. Care should be taken to allow the fish to heal for at least 30 days and probably more, no matter the solution administered, especially if giving repeated injections or infiltrations at the same site.  相似文献   

14.
Although muscle regeneration after injury is accompanied by apoptotic cell death, prolonged apoptosis inhibits muscle restoration. The goal of our study was to provide evidence that inhibition of apoptosis improves muscle function following blunt skeletal muscle injury. Therefore, 24 rats were used for induction of injury to the left soleus muscle using an instrumented clamp. All animals received either 3.3 mg/kg i.p. of the pan-caspase inhibitor Z-valinyl-alanyl-dl-aspartyl-fluoromethylketone (z-VAD.fmk) (n = 12 animals) or equivalent volumes of the vehicle solution DMSO (n = 12 animals) at 0 and 48 h after trauma. After assessment of the fast twitch and tetanic contraction capacity of the muscle at days 4 and 14 post injury, sampling of muscle tissue served for analysis of cell apoptosis (cleaved caspase 3 immunohistochemistry), cell proliferation (BrdU immunohistochemistry) as well as of muscle tissue area and myofiber diameter (HE planimetric analysis). Muscle strength analysis after 14 days in the z-VAD.fmk treated group revealed a significant increase in relative muscle strength when compared to the DMSO treated group. In contrast to the DMSO treated injured muscle, showing a transient switch towards a fast-twitching muscle phenotype (significant increase of the twitch-to-tetanic force ratio), z-VAD.fmk treated animals showed an enhanced healing process with a faster restoration of the twitch-to-tetanic force ratio towards the physiological slow-twitching muscle phenotype. This enhancement of muscle function was accompanied by a significant decrease of cell apoptosis and cell proliferation at day 4 as well as by a significant increase of muscle tissue area at day 4. At day 14 after injury z-VAD.fmk treated animals presented with a significant increase of myofiber diameter compared to the DMSO treated animals. Thus, z-VAD.fmk could provide a promising option in the anti-apoptotic therapy of muscle injury.  相似文献   

15.
The intraocular lens contains high levels of both cholesterol and sphingolipids, which are believed to be functionally important for normal lens physiology. The aim of this study was to explore the spatial distribution of sphingolipids in the ocular lens using mass spectrometry imaging (MSI). Matrix-assisted laser desorption/ionization (MALDI) imaging with ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to visualize the lipid spatial distribution. Equatorially-cryosectioned, 12 μm thick slices of tissue were thaw-mounted to an indium-tin oxide (ITO) glass slide by soft-landing to an ethanol layer. This procedure maintained the tissue integrity. After the automated MALDI matrix deposition, the entire lens section was examined by MALDI MSI in a 150 μm raster. We obtained spatial- and concentration-dependent distributions of seven lens sphingomyelins (SM) and two ceramide-1-phosphates (CerP), which are important lipid second messengers. Glycosylated sphingolipids or sphingolipid breakdown products were not observed. Owing to ultra high resolution MS, all lipids were identified with high confidence, and distinct distribution patterns for each of them are presented. The distribution patterns of SMs provide an understanding of the physiological functioning of these lipids in clear lenses and offer a novel pathophysiological means for understanding diseases of the lens.  相似文献   

16.
Fibroblast growth factor 2 (FGF2) protein plays important roles in wound healing and tissue regeneration. Collagen is clinically used for wound care applications. We investigated the potential value of FGF2-functionalized collagen matrices for skeletal muscle tissue engineering. When C2C12 cells were treated with FGF2, cell adhesion increased after 3 and 5 days compared to the control (P < 0.05). Wound healing activity of FGF2 was slightly higher than the control through cell migration. Cell proliferation activity of FGF2-functionalized collagen matrices on C2C12 cells also increased. Taken together, FGF2 stimulated C2C12 myoblast growth by promoting cell adhesion, proliferation and wound healing activity after injury. The potential effect of FGF2-functionalized collagen matrices was also observed. Thus FGF2 stimulates skeletal muscle development and regeneration, thereby leading to potential utility for skeletal muscle tissue engineering.  相似文献   

17.
Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix‐assisted laser‐desorption‐ionization‐time‐of‐flight mass spectrometry MALDI‐TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF‐TOF instrument. MALDI‐TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI‐TOF MS fingerprinting is a rapid, reproducible, high‐throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents.  相似文献   

18.
Owing to its capability of discriminating subtle mass-altering structural differences such as double bonds or elongated acyl chains, MALDI-based imaging MS (IMS) has emerged as a powerful technique for analysis of lipid distribution in tissue at moderate spatial resolution of about 50 μm. However, it is still unknown if MS1-signals and ion intensity images correlate with the corresponding apparent lipid concentrations. Analyzing renal sulfated glycosphingolipids, sulfatides, we validate for the first time IMS-signal identities using corresponding sulfatide-deficient kidneys. To evaluate the extent of signal quenching effects interfering with lipid quantification, we surgically dissected the three major renal regions (papillae, medulla, and cortex) and systematically compared MALDI IMS of renal sulfatides with quantitative analyses of corresponding lipid extracts by on-target MALDI TOF-MS and by ultra-performance LC-ESI-(triple-quadrupole)tandem MS. Our results demonstrate a generally strong correlation (R2 > 0.9) between the local relative sulfatide signal intensity in MALDI IMS and absolute sulfatide quantities determined by the other two methods. However, high concentrations of sulfatides in the papillae and medulla result in an up to 4-fold signal suppression. In conclusion, our study suggests that MALDI IMS is useful for semi-quantitative dissection of relative local changes of sulfatides and possibly other lipids in tissue.  相似文献   

19.
Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号