首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ‐coupled 2D LC‐MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25‐fold at p < 0.05) and 55 proteins were downregulated (<0.8‐fold at p < 0.05) in the TB serum. Bioinformatics analysis revealed that the differentially expressed proteins were related to the response to stimulus, the metabolic and immune system processes. The significantly differential expression of apolipoprotein CII (APOCII), CD5 antigen‐like (CD5L), hyaluronan‐binding protein 2 (HABP2), and retinol‐binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.  相似文献   

2.
The interaction of trimannoside, α?benzyl 3, 6‐di‐O‐(α‐D ‐mannopyranosyl)‐α‐D ‐mannopyranoside, 1 with ASAI (Allium sativam agglutinin I, garlic lectin) was studied to reveal the conformational preferences of this ligand in bound‐state and detailed binding mode at atomic level. The binding phenomenon was then compared with another well‐known mannose‐binding lectin, ConA (Concanavalin A). Structural studies of the ligand in free state were done using NMR spectroscopy and Molecular Dynamics simulations. It is found that the substituted‐trimannoside can undergo conformational transitions in solution, with one major and one minor conformation per glycosidic linkage (α 1→3 and α 1→6). On the other hand in the bound‐state only one of the two major conformations was significantly populated. The role of phenyl ring in the binding process was explored. An extended binding site was observed for the trimannoside in ASAI utilizing the aromatic substituent, which is not seen in ConA. Binding data from difference absorption spectroscopy supported this fact that the binding of benzyl‐substituted ligand is tighter with ASAI than ConA. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 952–967, 2010.  相似文献   

3.
Data from The Cancer Genome Atlas (TCGA) indicate that the expression levels of 14‐3‐3ζ and beclin 1 (a key molecule involved in cellular autophagy) are up‐regulated and positively correlated with each other (R = .5, P < .05) in HCC tissues. Chemoresistance developed in hepatoma cancer cells is associated with autophagy initiation. This study aimed to explore 14‐3‐3ζ’s role in regulating autophagy in HCC cells, with a focus on beclin 1. The co‐localization of 14‐3‐3ζ and beclin 1 was detectable in primary HCC tissues. To simulate in vivo tumour microenvironment (hypoxia), CSQT‐2 and HCC‐LM3 cells were exposed to 2% oxygen for 24 hours. The protein levels of 14‐3‐3ζ and phospho‐beclin 1S295 peaked at 12 hours following hypoxia. Meanwhile, the strongest autophagy flux occurred: LC3II was increased, and p62 was decreased significantly. By sequencing the coding area of BECN 1 gene of CSQT‐2 and HCC‐LM3 cells, we found that the predicted translational products of BECN 1 gene contained RLPS295VP (R, arginine; L, leucine; P, proline; S, serine; V, valine), a classic 14‐3‐3ζ binding motif. CO‐IP results confirmed that 14‐3‐3ζ bound to beclin 1, and this connection was markedly weakened when S295 was mutated into A295 (alanine). Further, 14‐3‐3ζ overexpression prevented phospho‐beclin 1S295 from degradation and enhanced its binding to VPS34, whilst its knockdown accelerated the degradation. Additionally, 14‐3‐3ζ enhanced the chemoresistance of HCC cells to cis‐diammined dichloridoplatium by activating autophagy. Our work reveals that 14‐3‐3ζ binds to and stabilizes phospho‐beclin 1S295 and induces autophagy in HCC cells to resist chemotherapy.  相似文献   

4.
Glypican-3(GPC3) is a promising tumor marker for hepatocellular carcinoma(HCC) diagnosis with high sensitivity and specificity.The aim of this study was to establish an immunohistochemical detection method for GPC3 using the 7D11 monoclonal antibody(7D11 mAb) and evaluate its application for HCC diagnosis.The feasibility of the 7D11 mAb was evaluated by immunohistochemistry performed on adjacent normal liver and intrahepatic cholangiocarcinoma(ICC) samples,Furthermore,the serum GPC3 levels were evaluated in 40 HCC patients,7 ICC patients and 50 healthy donors.The results showed that GPC3 was expressed in 85% of HCC tissues(34/40),but was undetectable in ICC tissues and adjacent normal tissues.GPC3 was significantly increased in the serum of HCC patients(17/40,42.5%) but was undetectable in the serum of ICC patients(0/7,0%) and healthy donors(0/50,0%).This prospective study evaluated the clinical usefulness of 7D11 mAb for GPC3 detection in HCC patients.In conclusion,the use of 7D11 mAb might be good for GPC3 large-scale applications for clinical diagnosis of HCC.  相似文献   

5.
6.
MicroRNAs (miRNAs) have been confirmed to participate in liver fibrosis progression and activation of hepatic stellate cells (HSCs). In this study, the role of miR‐193a/b‐3p in concanavalin A (ConA)‐induced liver fibrosis in mice was evaluated. According to the results, the expression of miR‐193a/b‐3p was down‐regulated in liver tissues after exposure to ConA. Lentivirus‐mediated overexpression of miR‐193a/b‐3p reduced ConA‐induced liver injury as demonstrated by decreasing ALT and AST levels. Moreover, ConA‐induced liver fibrosis was restrained by the up‐regulation of miR‐193a/b‐3 through inhibiting collagen deposition, decreasing desmin and proliferating cell nuclear antigen (PCNA) expression and lessening the content of hydroxyproline, transforming growth factor‐β1 (TGF‐β1) and activin A in liver tissues. Furthermore, miR‐193a/b‐3p mimics suppressed the proliferation of human HSCs LX‐2 via inducing the apoptosis of LX‐2 cells and lowering the levels of cell cycle‐related proteins Cyclin D1, Cyclin E1, p‐Rb and CAPRIN1. Finally, TGF‐β1 and activin A‐mediated activation of LX‐2 cells was reversed by miR‐193a/b‐3p mimics via repressing COL1A1 and α‐SMA expression, and restraining the activation of TGF‐β/Smad2/3 signalling pathway. CAPRIN1 and TGF‐β2 were demonstrated to be the direct target genes of miR‐193a/b‐3p. We conclude that miR‐193a/b‐3p overexpression attenuates liver fibrosis through suppressing the proliferation and activation of HSCs. Our data suggest that miR‐193a‐3p and miR‐193b‐3p may be new therapeutic targets for liver fibrosis.  相似文献   

7.
Previous work by us and others reported decreased expression of miR-199a-3p in hepatocellular carcinoma (HCC) tissues compared to adjacent benign tissue. We report here a significant reduction of miR-199a-3p expression in 7 HCC cell lines. To determine if miR-199a-3p has a tumor suppressive role, pre-miR-199a-3p oligonucleotides were transfected into the HCC cell lines. Pre-miR-199a-3p oligonucleotide reduced cell proliferation by approximately 60% compared to control oligonucleotide in only two cell lines (SNU449 and SNU423); the proliferation of the other 5 treated cell lines was similar to control oligonucleotide. A pre-miR-199a-3p oligonucleotide formulated with chemical modifications to enhance stability while preserving processing, reduced cell proliferation in SNU449 and SNU423 to the same extent as the commercially available pre-miR-199a-3p oligonucleotide. Furthermore, only the duplex miR-199a-3p oligonucleotide, and not the guide strand alone, was effective at reducing cell viability. Since a CD44 variant was essential for c-Met signaling [V. Orian-Rousseau, L. Chen, J.P. Sleeman, P. Herrlich, H. Ponta, CD44 is required for two consecutive steps in HGF/c-Met signaling, Genes Dev. 16 (2002) 3074-3086] and c-Met is a known miR-199a-3p target, we hypothesized that miR-199a-3p may also target CD44. Immunoblotting confirmed that only the two HCC lines that were sensitive to the effects of pre-miR-199a-3p were CD44+. Direct targeting of CD44 by miR-199a-3p was confirmed using luciferase reporter assays and immunoblotting. Transfection of miR-199a-3p into SNU449 cells reduced in vitro invasion and sensitized the cells to doxorubicin; both effects were enhanced when hyaluronic acid (HA) was added to the cell cultures. An inverse correlation between the expression of miR-199a-3p and CD44 protein was noted in primary HCC specimens. The ability of miR-199a-3p to selectively kill CD44+ HCC may be a useful targeted therapy for CD44+ HCC.  相似文献   

8.
The hepatitis B virus X‐protein (HBx), a multifunctional viral regulator, participates in the viral life cycle and in the development of hepatocellular carcinoma (HCC). We previously reported a high incidence of HCC in transgenic mice expressing HBx. In this study, proteomic analysis was performed to identify proteins that may be involved in hepatocarcinogenesis and/or that could be utilized as early detection biomarkers for HCC. Proteins from the liver tissue of HBx‐transgenic mice at early stages of carcinogenesis (dysplasia and hepatocellular adenoma) were separated by 2‐DE, and quantitative changes were analyzed. A total of 22 spots displaying significant quantitative changes were identified using LC‐MS/MS. In particular, several proteins involved in glucose and fatty acid metabolism, such as mitochondrial 3‐ketoacyl‐CoA thiolase, intestinal fatty acid‐binding protein 2 and cytoplasmic malate dehydrogenase, were differentially expressed, implying that significant metabolic alterations occurred during the early stages of hepatocarcinogenesis. The results of this proteomic analysis provide insights into the mechanism of HBx‐mediated hepatocarcinogenesis. Additionally, this study identifies possible therapeutic targets for HCC diagnosis and novel drug development for treatment of the disease.  相似文献   

9.
HIV‐1 gp120 undergoes multiple conformational changes both before and after binding to the host CD4 receptor. BMS‐626529 is an attachment inhibitor (AI) in clinical development (administered as prodrug BMS‐663068) that binds to HIV‐1 gp120. To investigate the mechanism of action of this new class of antiretroviral compounds, we constructed homology models of unliganded HIV‐1 gp120 (UNLIG), a pre‐CD4 binding‐intermediate conformation (pCD4), a CD4 bound‐intermediate conformation (bCD4), and a CD4/co‐receptor‐bound gp120 (LIG) from a series of partial structures. We also describe a simple pathway illustrating the transition between these four states. Guided by the positions of BMS‐626529 resistance substitutions and structure–activity relationship data for the AI series, putative binding sites for BMS‐626529 were identified, supported by biochemical and biophysical data. BMS‐626529 was docked into the UNLIG model and molecular dynamics simulations were used to demonstrate the thermodynamic stability of the different gp120 UNLIG/BMS‐626529 models. We propose that BMS‐626529 binds to the UNLIG conformation of gp120 within the structurally conserved outer domain, under the antiparallel β20–β21 sheet, and adjacent to the CD4 binding loop. Through this binding mode, BMS‐626529 can inhibit both CD4‐induced and CD4‐independent formation of the “open state” four‐stranded gp120 bridging sheet, and the subsequent formation and exposure of the chemokine co‐receptor binding site. This unique mechanism of action prevents the initial interaction of HIV‐1 with the host CD4+ T cell, and subsequent HIV‐1 binding and entry. Our findings clarify the novel mechanism of BMS‐626529, supporting its ongoing clinical development. Proteins 2015; 83:331–350. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
We performed integrative network analyses to identify targets that can be used for effectively treating liver diseases with minimal side effects. We first generated co‐expression networks (CNs) for 46 human tissues and liver cancer to explore the functional relationships between genes and examined the overlap between functional and physical interactions. Since increased de novo lipogenesis is a characteristic of nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC), we investigated the liver‐specific genes co‐expressed with fatty acid synthase (FASN). CN analyses predicted that inhibition of these liver‐specific genes decreases FASN expression. Experiments in human cancer cell lines, mouse liver samples, and primary human hepatocytes validated our predictions by demonstrating functional relationships between these liver genes, and showing that their inhibition decreases cell growth and liver fat content. In conclusion, we identified liver‐specific genes linked to NAFLD pathogenesis, such as pyruvate kinase liver and red blood cell (PKLR), or to HCC pathogenesis, such as PKLR, patatin‐like phospholipase domain containing 3 (PNPLA3), and proprotein convertase subtilisin/kexin type 9 (PCSK9), all of which are potential targets for drug development.  相似文献   

11.
Cyclin D1 is a key regulatory factor of the G1 to S transition during cell cycle progression. Aberrant cyclin D gene amplification and abnormal protein expression have been linked to hepatocellular carcinoma (HCC) tumorigenesis. Intrabodies, effective anticancer therapies that specifically inhibit target protein function within all intracellular compartments, may block cyclin D1 function. Here, a single‐chain variable fragment (scFv) antibody against cyclin D1 (ADκ) selected from a human semi‐synthetic phage display scFv library is expressed in Escherichia coli as soluble ADκ. Purified ADκ specifically binds to recombinant and endogenous cyclin D1 with high affinity. To enable blocking of intracellular cyclin D1 activity, an endoplasmic reticulum (ER) retention signal sequence is added to the ADκ sequence to encode anti‐cyclin D1 intrabody ER‐ADκ. Transfection of HepG2 cells with expression vector encoding ER‐ADκ elicited intracellular ER‐ADκ expression leading to cyclin D1 binding, significant G1 phase arrest, and apoptosis that are mechanistically tied to decreased intracellular phosphorylated retinoblastoma protein (Rb) levels. Meanwhile, ER‐ADκ dramatically inhibited subcutaneous human HCC xenografts growth in nude mice in vivo after injection of tumors with expression vector encoding ER‐ADκ. These results demonstrate the potential of intrabody‐based cyclin D1 targeting therapy as a promising treatment for HCC.  相似文献   

12.
In previous studies we found that sperm binding activity in the vitelline coat of the freshwater bivalve Unio elongatulus is located on the O‐linked oligosaccharide chains of gp273, one of the two major components of the extracellular coat, and that fucose plays a key role in this interaction. In this paper we report the partial characterization of a large glycopeptide (about 140 kDa) obtained by cyanogen bromide fragmentation of gp273, that maintains sperm binding activity. Lectin blotting revealed that the glycopeptide reacted with lectins from Arachis hypogaea (PNA) and Lotus tetragonolobus (LTA) but not Canavalia ensiformis (ConA). No other PNA‐positive fragments could be detected in the electrophoretic pattern of fragmented gp273 but several ConA‐positive fragments of lower molecular weight were present indicating that all the O‐linked chains are clustered together in this fragment. Two‐dimensional gel electrophoresis of the fragment revealed it to be acidic in nature in contrast with the neutral character of the whole gp273 molecule. Competition binding assay showed that this fragment is a strong inhibitor of the interaction, whereas no effect was detected using the ConA‐positive peptides. This confirms that the sperm receptor activity of gp273 is related to its O‐linked chains. The immunodominance of this fragment is also discussed. Mol. Reprod. Dev. 54:203–207, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
Golgi phosphoprotein 73 (GP73) has been regarded as a novel serum biomarker for the diagnosis of hepatocellular carcinoma (HCC) in recent years. It has been reported that the upregulation of GP73 may promote the carcinogenesis and metastasis of HCC; however, the mechanisms remain poorly understood. In this study, GP73 correlates positively with matrix metalloproteinase‐2 (MMP‐2) in HCC‐related cells and tissues. Further studies indicate that the knockdown of GP73 blocks MMP‐2 trafficking and secretion, resulting in cell invasion inhibition. Additionally, the knockdown of GP73 induces the accumulation of intracellular MMP‐2, which inhibits the phosphorylation of Src at Y416 and triggers the inhibition of SAPK/JNK and p53‐p21 signalling pathways through a negative feedback loop. Finally, the transactivation of MMP2 was inhibited by the reduction in E2F1. This study reveals that GP73 plays functional roles in the trafficking and equilibrium of epithelial‐mesenchymal transition (EMT)‐related secretory proteins and that GP73 serves as a new potential target for combating the metastasis of HCC.  相似文献   

14.
Summary Receptors of 12 lectins in 25 cases of human hepatocellular carcinomas (HCC) were histochemically investigated by avidin-biotin-peroxidase complex (ABC) methol. Liver tissues of five cirrhotic patients and five normal subjects were used as controls. SJA receptor was absent both in HCC and controls, while LCA and PSA receptors were present in all tissues studied here. Receptors of DBA, PHA, PNA, UEAI and SBA which did not bind to normal, cirrhotic and pericarcinomatous liver tissues had the positive rates of 4%, 44%, 16%, 4% and 12% in HCC, respectively. Four lectins which strongly bound to the non-cancer liver tissues had their receptors in 96% (ConA, WGA, RCAI) and 36% (BSAI) of HCC. The pretreatment of tissue sections with neuraminidase abolished most of WGA receptors and exposed some PNA binding sites. There were many differences in lectin distribution between HCC and noncancer liver tissues. The changes of glycoconjugates in HCC were discussed.  相似文献   

15.
Dysregulation of genes involved in alternative splicing contributes to hepatocarcinogenesis. SNRPB, a component of spliceosome, is implicated in human cancers, yet its clinical significance and biological function in hepatocellular carcinoma (HCC) remains unknown. Here, we show that SNRPB expression is increased in HCC tissues, compared with the nontumorous tissues, at both messenger RNA and protein levels in two independent cohorts. High expression of SNRPB is significantly associated with higher pathological grade, vascular invasion, serum alpha‐fetoprotein level, tumor metastasis, and poor disease‐free and overall survivals. Luciferase reporter and chromatin immunoprecipitation assays demonstrate that SNRPB upregulation in HCC is mediated by c‐Myc. Positive correlation is found between SNRPB and c‐Myc expression in clinical samples. In vitro studies show that ectopic expression of SNRPB promotes HCC cell proliferation and migration, whereas knockdown of SNRPB results in the opposite phenotypes. Collectively, our data suggest SNRPB function as an oncogene and serve as a potential prognostic factor in HCC.  相似文献   

16.
To identify and characterize a serologic glycoprotein biomarker for hepatocellular carcinoma (HCC), multi‐lectin affinity chromatography was used to isolate intracellular N‐linked glycoprotein fractions from five paired non‐tumor and tumor tissues. From the series of 2‐D DIGE targeted differentially expressed N‐linked glycoproteins, we identified human liver carboxylesterase 1 (hCE1), which was remarkably down‐regulated in tumor tissues, a finding confirmed by Western blot, a quantitative real‐time RT‐PCR, and immunohistochemical staining of non‐tumor and tumor tissues from total 58 HCC patients. To investigate whether hCE1 is also present in human plasma, we employed a magnetic bead‐based immunoprecipitation followed by nano‐LC‐MS/MS analysis, and we found for the first time that hCE1 is present in human plasma as opposed to that in liver tissues. That is, from normalization of hCE1 signal by the immunoprecipitation and Western blot analysis, hCE1 levels were increased in plasma specimens from HCC patients than in plasma from other disease patient groups (e.g. liver cirrhosis, chronic hepatitis, cholangiocarcinoma, stomach cancer, and pancreatic cancer). From the receiver operating characteristic analysis in HCC, both sensitivity and specificity were shown to be greater than 70.0 and 85.0%, respectively. Thus, the high‐resolution proteomic approach demonstrates that hCE1 is a good candidate for further validation as a serologic glycoprotein biomarker for HCC.  相似文献   

17.
The clinical relevance of human leucocyte antigen‐G (HLA‐G) has been postulated in malignancies. Hepatocellular carcinoma (HCC) is a major contributor to cancer incidence and mortality worldwide; however, potential roles of HLA‐G in HCC remain unknown. In the current study, HLA‐G expression in 219 primary HCC lesions and their adjacent non‐tumourous samples was analysed with immunohistochemistry. Correlations among HLA‐G expression and various clinical parameters were evaluated. Meanwhile, functional analysis of transfected cell surface HLA‐G expression on NK cell cytolysis was performed in vitro. HLA‐G expression was observed in 50.2% (110/219) of primary HCC lesions, and undetectable in corresponding adjacent normal liver tissues. HLA‐G expression was found in 37.8%, 41.9% and 71.4% of stage I, II and III HCC lesions, respectively. Data revealed that HLA‐G expression in HCC was strongly correlated to advanced disease stage (I versus II, P= 0.882; I versus III, P= 0.020; II versus III, P= 0.037). HLA‐G expression was also more frequently observed in elder patients (≥median 52 years, 57.5%versus 43.4%, P= 0.004). Meanwhile, plasma soluble HLA‐G in HCC patients was significantly higher than that in normal controls (median, 92.49U/ml versus 9.29U/ml, P= 0.000). Functional assay showed that HLA‐G expression in transfected cells could dramatically decrease the NK cell cytolysis (P= 0.036), which could be markedly restored by the blockade of HLA‐G (P= 0.004) and its receptor ILT2 (P= 0.019). Our finding indicated that HLA‐G expression was strongly correlated to advanced disease stage, and more frequently observed in elder patients. Its relevance to HCC progression might be result from the inhibition of NK cell cytolysis.  相似文献   

18.
In this study, we investigated how miR‐10b‐3p regulated the proliferation, migration, invasion in hepatocellular carcinoma (HCC) at both in vitro and in vivo levels. CMTM5 was among the differentially expressed genes (data from TCGA). The expression of miR‐10b‐3p and CMTM5 was detected by qRT‐PCR and Western blot (WB). TargetScan was used to acquire the binding sites. Dual‐luciferase reporter gene assay was used to verify the direct target relationship between miR‐10b‐3p and CMTM5. WB analysis proved that miR‐10b‐3p suppressed CMTM5 expression. Furthermore, proliferation, invasion and migration of HCC cells were measured by MTT assay, colony formation assay, transwell assay and wound‐healing assay, respectively. Kaplan‐Meier plotter valued the overall survival of CMTM5. Finally, xenograft assay was also conducted to verify the effects of miR‐10b‐3p/CMTM5 axis in vivo. Up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were detected in HCC tissues and cell lines. CMTM5 was verified as a target gene of miR‐10b‐3p. The overexpression of CMTM5 contributed to the suppression of the proliferative, migratory and invasive abilities of HCC cells. Moreover, the up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were observed to be associated with worse overall survival. Lastly, we have confirmed the carcinogenesis‐related roles of miR‐10b‐3p and CMTM5 in vivo. We concluded that the up‐regulation of miR‐10b‐3p promoted the progression of HCC cells via targeting CMTM5.  相似文献   

19.
MicroRNAs play vital regulatory roles in various type of tumorigenesis. We aimed to explore the functional microRNAs that might play as therapeutic targets in hepatocellular carcinoma (HCC). In this study, our results revealed that microRNA‐106b was significantly increased in HCC tumor tissues. However, miR‐106b knockdown remarkably suppressed the growth and increased the apoptosis of Hub‐7 HCC cells. Biological analysis indicated that miR‐106b directly targeted toZinc finger and BTB domain‐containing protein 7A (Zbtb7a) to regulate the apoptosis of Hub‐7 cells. Extensively, Zbtb7a overexpression reversed Huh‐7 cell apoptosis and growth in vitro. Furthermore, in vivo studies confirmed that miR‐106b inhibition or Zbtb7a overexpression retarded the growth of Hub‐7 xenograft tumor in nude mice. In conclusion, we provide the evidence for the regulatory role of miR‐106b in HCC, which is causally linked to targeting of Zbtb7a. This study may provide miR‐106b as a potential therapeutic strategy for HCC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号