首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
A disease known as broccoli stunt, associated with “Candidatus Phytoplasma pruni”‐related strain, has been responsible by significant economic losses in crops grown in the State of São Paulo, Brazil. Previous investigations evidenced some species of leafhoppers observed in broccoli fields as potential vectors of the phytoplasma. In this study, the six species more frequently found in broccoli crops were collected to confirm that evidence. Group of five insects of each species were confined per broccoli seedling for an inoculation access period (IAP) of 48 hr. After the IAP, each group was tested for detection of phytoplasma. Evaluation of plants was performed 60 days after inoculation based on the presence of phytoplasma in their tissues. When transmission was positive, genomic fragments corresponding to 16S rDNA were sequenced both for the infected plants and its respective group of insects. The results revealed that the species Agallia albidula, Agalliana sticticollis, Atanus nitidus and Balcluta hebe were able to transmit phytoplasma to broccoli seedlings. Based on the estimates of transmission probability by single insects (P), the highest transmission rate was observed for A. nitidus (24.2%) and the lowest for B. hebe (1.9%). The sequencing of 16S rDNA revealed complete similarity between the sequences of the phytoplasma transmitted to broccoli test plants and the sequences of the phytoplasma found in the field‐collected leafhoppers. These findings support the inclusion of those species as vectors of phytoplasmas belonging to 16SrIII group in broccolis, providing additional information to improve management of this important disease of endemic occurrence.  相似文献   

2.
3.
Ratoon stunting disease (RSD) caused by bacterium Leifsoniaxyli subsp. xyli (Lxx) is a devastating disease of sugarcane over a large part of the world. Genetic improvement for RSD‐resistant varieties is considered the most effective method to control the disease. However, genetic improvement of sugarcane is hindered by the limited information about the molecular mechanisms underlying Lxx pathogenicity and defence responses in sugarcane. In this study, genome‐wide gene expression profiling was used to compare RSD‐resistant (CP72‐2086) and RSD‐susceptible (GT11) genotypes at different infection time points in order to identify the candidate regulators for RSD resistance. A total of 14,494 differentially expressed genes (DEGs) were identified, indicating that dramatic changes had occurred in gene expression upon Lxx infection, especially in the susceptible genotype. Enrichment analysis showed that a large number of genes related to plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis and starch and sucrose metabolism was responsible for sugarcane response to Lxx infection. Plant hormone signalling pathway genes were significantly differentially expressed at the early infection stage between the two genotypes. The resistant genotype chose the jasmonic acid‐ and ethylene‐dependent host‐defence pathways to resist Lxx infection, whereas the susceptible genotype preferred the salicylic acid‐dependent host‐defence pathways. These findings help unravel the molecular mechanisms of sugarcane plant–Lxx interactions and may pave the way for sugarcane breeding for disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号