首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苜蓿悬浮细胞对盐胁迫的反应和适应   总被引:2,自引:0,他引:2  
苜蓿悬浮细胞能够适应200mmol/L NaCl及其以下盐浓度的胁迫,适应细胞中游离脯氨酸、还原糖和Na~ 积累增加。400mmol/LNaCl对细胞生长明显抑制。细胞对盐胁迫的反应和适应中PM-ATPase和TM-ATPase起到重要作用,在适应细胞中两者的活力都明显增加。PM-ATPase活力的增加可受CHX的明显抑制。  相似文献   

2.
    
To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel‐based and a LC MS/MS‐based proteomics method. Two‐day‐old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two‐phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel‐based proteomics, four and eight protein spots were identified as up‐ and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up‐ and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low‐abundance proteins could be identified by the LC MS/MS‐based method. Three homologues of plasma membrane H+‐ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H+‐ATPase protein.  相似文献   

3.
菜豆热激蛋白在生物膜上的定位   总被引:8,自引:0,他引:8  
选用菜豆 Phaseolus vulgris L. 下胚轴 ,运用35S- Met标记放射自显影和二维电泳技术 ,研究热激蛋白 HSPs 的表达和在生物膜组分中的定位 .实验结果表明 ,盐溶蛋白中主要HSPs为 70 k D HSPs和小分子量 HSPs,而小分子量组 HSPs大量富集在质膜和液泡膜组分中 .  相似文献   

4.
    
Experiment was designed to investigate the expression of heat shock proteins (HSPs) in hypocotyls of Phaseolus vulgaris L. and HSPs localization on cell membranes by means of 35S-Met labelling, fluorography of SDS-PAGE and 2-D electrophoresis. The results showed that 70 kD group HSPs were the major labelled proteins and the small HSPs accumulate largely in the fractions of plasma membrane and tonoplast membrane.  相似文献   

5.
Redox reactions were studied in more than 90% pure tonoplast and plasma membranes isolated by free-flow electrophoresis from soybean (Glycine max) hypocotyls. Both types of membrane contained a b-type cytochrome (max = 561 nm) and a noncovalently bound flavin, two possible components of a transmembrane electron-transport chain. Isolated tonoplast and plasma membranes reduced ferricyanide, indophenol and various iron complexes with NADH or NADPH as electron donors. The redox activity was inhibited in tonoplast membranes by about 60% by 10 μM p-chloromercuribenzene sulfonate, 8% by 500 μM lanthanum nitrate and 10% by 100 μM nitrophenyl acetate. In contrast, the redox activity of isolated plasma membranes was inhibited by about 60% by 500 μM lanthanum nitrate or 100 μM nitrophenyl acetate, but only 25% by 10 μM p-chloromercuribenzene sulfonate. The results show that both tonoplast and plasma membranes of soybean contain active electron-transport systems, but that the two systems respond differently to inhibitors.  相似文献   

6.
    
Highly purified tonoplast and plasma-membrane vesicles isolated from roots of Lepidium sativum L. (garden cress) were used as a starting material for generating a monoclonal antibody against plant tonoplast. Tonoplast vesicles were isolated by discontinuous-sucrose-gradient centrifugation followed by free-flow electrophoresis. The deglycosylated tonoplast fraction was used to generate monoclonal antibodies by immunization of Balb/c-mice and by fusion of their -lymphocytes with the mouse cell line X 63 Ag 8.653. Using plasma membrane purified by two-phase partitioning and freeflow electrophoresis to define the negative signal in screening, and purified tonoplast to define the positive signal in screening, a monoclonal antibody (TOP 71) was obtained which recognized a tonoplast protein of 71 kDa by immunoblotting in cress-root membrane fractions. Two-dimensional gel electrophoresis, affinoblotting and binding to concanavalin A showed that the TOP 71-antigen was a glycosylated protein and had an isoelectric point (pI) of 4.5. The TOP 71-antigen was found in the different tissues of organs of several higher plants (Glycine max L., Curcurbita pepo L., Zea mays L.) where it did not cross-react with the purified plasma-membrane fractions of these plants. Additionally, TOP 71 recognized its antigen in microsomal fractions of two lower plants (Chara globularis Thuili., Matteucia struthiopteris Tod.).Abbreviations ELISA enzyme-linked immunosorbent assay - FFE free-flow electrophoresis - IEF isoelectric focusing - MAB monoclonal antibody - PFFE purified plasma membrane after FFE - pI isoelectric point - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis - Tgr tonoplast-enriched fraction (gr = gradient) - TFFE purified tonoplast after FFEWe thank I. Hartmann for technical assistance, R. Görlich (Institut für Landwirtschaftliche Botanik, Universität Bonn, Bonn, FRG) for advice on hybridoma techniques, M.F. Manolson (Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pa., USA) for the gift of the anti-A subunit-ATPase antibody, and R. Liedtke, H. Geithmann, and A. Heppekausen for preparation of figures. This work was financially supported by the Deutsche Forschungsgemeinschaft and the Bundesministerium für Forschung und Technologie.  相似文献   

7.
Klein M  Burla B  Martinoia E 《FEBS letters》2006,580(4):1112-1122
In many different plant species, genes belonging to the multidrug resistance-associated protein (MRP, ABCC) subfamily of ABC transporters have been identified. Following the discovery of vacuolar transport systems for xenobiotic or plant-produced conjugated organic anions, plant MRPs were originally proposed to be primarily involved in the vacuolar sequestration of potentially toxic metabolites. Indeed, heterologous expression of different Arabidopsis MRPs in yeast demonstrates their activity as ATP-driven pumps for structurally diverse substrates. Recent analysis of protein-protein interactions and the characterization of knockout mutants in Arabidopsis suggests that apart from transport functions plant MRPs play additional roles including the control of plant transpiration through the stomata. Here, we review and discuss the diverse functions of plant MRP-type ABC transporters and present an organ-related and developmental analysis of the expression of Arabidopsis MRPs using the publicly available full-genome chip data.  相似文献   

8.
Molecular physiology of higher plant sucrose transporters   总被引:5,自引:0,他引:5  
Sauer N 《FEBS letters》2007,581(12):2309-2317
Sucrose is the primary product of photosynthetic CO(2) fixation that is used for the distribution of assimilated carbon within higher plants. Its partitioning from the site of synthesis to different sites of storage, conversion into other storage compounds or metabolic degradation involves various steps of cell-to-cell movement and transport. Many of these steps occur within symplastic domains, i.e. sucrose moves passively cell-to-cell through plasmodesmata. Some essential steps, however, occur between symplastically isolated cells or tissues. In these cases, sucrose is transiently released into the apoplast and its cell-to-cell transport depends on the activity of plasma membrane-localized, energy dependent, H(+)-symporting carrier proteins. This paper reviews the current knowledge of sucrose transporter physiology and molecular biology.  相似文献   

9.
  总被引:2,自引:0,他引:2  
Zörb C  Schmitt S  Mühling KH 《Proteomics》2010,10(24):4441-4449
It is of fundamental importance to understand adaptation processes leading to salt resistance. The initial effects on maize roots in the first hour after the adjustment to saline conditions were monitored to elucidate initial responses. The subsequent proteome change was monitored using a 2‐D proteomic approach. We found several new salt‐inducible proteins, whose expression has not been previously reported to be modulated by salt. A set of phosphoproteins in maize was detected but only ten proteins were phosphorylated and six proteins were dephosphorylated after the application of 25 mM NaCl for 1 h. Some of the phosphorylated maize proteins such as fructokinase, UDP‐glucosyl transferase BX9, and 2‐Cys‐peroxyredoxine were enhanced, whereas an isocitrate‐dehydrogenase, calmodulin, maturase, and a 40‐S‐ribosomal protein were dephosphorylated after adjustment to saline conditions. The initial reaction of the proteome and phosphoproteome of maize after adjustment to saline conditions reveals members of sugar signalling and cell signalling pathways such as calmodulin, and gave hint to a transduction chain which is involved in NaCl‐induced signalling. An alteration of 14‐3‐3 proteins as detected may change plasma membrane ATPase activity and cell wall growth regulators such as xyloglucane endotransglycosylase were also found to be changed immediately after the adjustment to salt stress.  相似文献   

10.
11.
    
Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+) -transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism.  相似文献   

12.
The plasma membrane of a cyanobacterial cell is crucial as barrier against the outer medium. It is also an energy-transducing membrane as well as essential for biogenesis of cyanobacterial photosystems and the endo-membrane system. Previously we have identified 57 different proteins in the plasma membrane of control cells from Synechocystis sp. strain PCC6803. In the present work, proteomic screening of salt-stress proteins in the plasma membrane resulted in identification of 109 proteins corresponding to 66 different gene products. Differential and quantitative analyses of 2-DE profiles of plasma membranes isolated from both control and salt-acclimated cells revealed that twenty proteins were enhanced/induced and five reduced during salt stress. More than half of the enhanced/induced proteins were periplasmic binding proteins of ABC-transporters or hypothetical proteins. Proteins that exhibited the highest enhancement during salt stress include FutA1 (Slr1295) and Vipp1 (Sll0617), which have been suggested to be involved in protection of photosystem II under iron deficiency and in thylakoid membrane formation, respectively. Other salt-stress proteins were regulatory proteins such as PII protein, LrtA, and a protein that belongs to CheY subfamily. The physiological significance of the identified salt-stress proteins in the plasma membrane is discussed integrating our current knowledge on cyanobacterial stress physiology.  相似文献   

13.
    
The effects of changes in plasma membrane (PM) sterol lateral organization and availability on the control of signaling pathways have been reported in various animal systems, but rarely assessed in plant cells. In the present study, the pentaene macrolide antibiotic filipin III, commonly used in animal systems as a sterol sequestrating agent, was applied to tobacco cells. We show that filipin can be used at a non-lethal concentration that still allows an homogeneous labeling of the plasma membrane and the formation of filipin-sterol complexes at the ultrastructural level. This filipin concentration triggers a rapid and transient NADPH oxidase-dependent production of reactive oxygen species, together with an increase in both medium alkalinization and conductivity. Pharmacological inhibition studies suggest that these signaling events may be regulated by phosphorylations and free calcium. By conducting FRAP experiments using the di-4-ANEPPDHQ probe and spectrofluorimetry using the Laurdan probe, we provide evidence for a filipin-induced increase in PM viscosity that is also regulated by phosphorylations. We conclude that filipin triggers ligand-independent signaling responses in plant cells. The present findings strongly suggest that changes in PM sterol availability could act as a sensor of the modifications of cell environment in plants leading to adaptive cell responses through regulated signaling processes.  相似文献   

14.
    
Identification and characterization of proteins involved in salt tolerance are imperative for revealing its genetic mechanisms. In this study, ionic and proteomic responses of a Tibetan wild barley XZ16 and a well‐known salt‐tolerant barley cv. CM72 were analyzed using inductively coupled plasma‐optical emission spectrometer, 2DE, and MALDI‐TOF/TOF MS techniques to determine salt‐induced differences in element and protein profiles between the two genotypes. In total, 41 differentially expressed proteins were identified in roots and leaves, and they were associated with ion homeostasis, cell redox homeostasis, metabolic process, and photosynthesis. Under salinity stress, calmodulin, Na/K transporters, and H+‐ATPases were involved in establishment of ion homeostasis for barley plants. Moreover, ribulose‐1,5‐bisphosphate carboxylase/oxygenase activase and oxygen‐evolving enhancer proteins were significantly upregulated under salinity stress, indicating the great impact of salinity on photosynthesis. In comparison with CM72, XZ16 had greater relative dry weight and lower Na accumulation in the shoots under salinity stress. A higher expression of HvNHX1 in the roots, and some specific proteins responsible for ion homeostasis and cell redox homeostasis, was also found in XZ16 exposed to salt stress. The current results showed that Tibetan wild barley XZ16 and cultivated barley cultivar CM72 differ in the mechanism of salt tolerance.  相似文献   

15.
Abstract Effects of various inhibitors on the intracellular accumulation of glycerol and inorganic ions in a salt-tolerant yeast, Zygosaccharomyces rouxii , were examined for several hours during NaCl-induced salt stress. Cycloheximide strongly inhibited the intracellular accumulation of glycerol during salt stress but chloramphenicol did not. Rapid activation of plasma-membrane ATPase was apparent within 5 min after the start of salt stress and after 1 h a second, slower activation occurred. ATP was maintained at a higher level during salt stress than that in its absence. Experiments with various other inhibitors demonstrated a close relationship between synthesis of glycerol, activation of plasma membrane ATPase and increases in levels of ATP. These results suggest that activation by salt stress of plasma-membrane ATPase may trigger the synthesis of glycerol for osmoregulation.  相似文献   

16.
Membranes from roots of Lepidium sativum L. were investigated in situ and after fractionation by applying morphological and biochemical methods. After freeze-fracture combined with filipin labelling the tonoplast and the plasma membrane could be easily characterized by the frequency of intramembranous particles and the arrangement of filipin-induced lesions. On tonoplast vesicles, the filipin-induced lesions were arranged in clusters of different size whereas they were evenly distributed on plasma membrane vesicles. Enrichment of tonoplast and plasma membrane in different fractions was documented by filipin labelling, phosphotungstic acid staining and by the profiles of marker enzyme activities and ATP-dependent H+-transport. Additionally, the presence of rightside-out and inside-out vesicles of both tonoplast and plasma membrane could be demonstrated. It was found that filipin labelling used in combination with freeze-fracturing is suitable for quantitative determinations of the percentages of tonoplast and plasma membrane in membrane fractions, which have been found to be more than 40% for the tonoplast and about 40% for plasma membrane in the respective enriched fractions.Abbreviations EF extraplasmatic fracture face - FIL filipin induced lesion - IMP intramembranous particle - PF plasmatic fracture face - PTA phosphotungstic acid-chromic acid stain - UDPG uridine 5-diphosphate glucose A preliminary report was presented at the joint Annual Meeting of the Belgian and German Societies for Cell Biology, Bonn, March 1985Dedicated to Professor Augustin Betz on the occasion of his 66th birthday  相似文献   

17.
    
Although the vacuole is the most important final store for toxic heavy metals like cadmium (Cd2+), our knowledge on how they are transported into the vacuole is still insufficient. It has been suggested that Cd2+ can be transported as phytochelatin‐Cd2+ by an unknown ABC transporter or in exchange with protons by cation/proton exchanger (CAX) transporters. To unravel the contribution of vacuolar transporters to Cd2+ detoxification, a quantitative proteomics approach was performed. Highly purified vacuoles were isolated from barley plants grown under minus, low (20 μM), and high (200 μM) Cd2+ conditions and protein levels of the obtained tonoplast samples were analyzed using isobaric tag for relative and absolute quantitation (iTRAQ?). Although 56 vacuolar transporter proteins were identified, only a few were differentially expressed. Under low‐Cd2+ conditions, an inorganic pyrophosphatase and a γ‐tonoplast intrinsic protein (γ‐TIP) were up‐regulated, indicating changes in energization and water fluxes. In addition, the protein ratio of a CAX1a and a natural resistance‐associated macrophage protein (NRAMP), responsible for vacuolar Fe2+ export was increased. CAX1a might play a role in vacuolar Cd2+ transport. An increase in NRAMP activity leads to a higher cytosolic Fe2+ concentration, which may prevent the exchange of Fe2+ by toxic Cd2+. Additionally, an ABC transporter homolog to AtMRP3 showed up‐regulation. Under high Cd2+ conditions, the plant response was more specific. Only a protein homologous to AtMRP3 that showed already a response under low Cd2+ conditions, was up‐regulated. Interestingly, AtMRP3 is able to partially rescue a Cd2+‐sensitive yeast mutant. The identified transporters are good candidates for further investigation of their roles in Cd2+ detoxification.  相似文献   

18.
    
Lipid rafts are microdomains in plasma membrane and can mediate cytotoxicity. In this study, the role of lipid rafts in ochratoxin A‐induced toxicity was investigated using Hepatoblastoma Cell Line HepG‐2 cells. Disruption of cholesterol‐containing lipid rafts enhanced Ochratoxin A (OTA) toxicity, as shown by increased lactate dehydrogenase leakage, increased reactive oxygen species level and reduction of superoxide dismutase activity in a time‐dependent manner. Isobaric tags for relative and absolute quantitation‐based proteomics of the cell membranes showed that nearly 85.5% proteins were downregulated by OTA, indicating that OTA inhibited the membrane protein synthesis. Most of altered proteins were involved in Gene Ontology “transport”, “cell adhesion” and “vesicle‐mediated transport”. In conclusion, lipid rafts play a key role in OTA‐induced cytotoxicity. This study provides insight into how OTA toxicity is regulated by the plasma membrane, especially the lipid rafts.  相似文献   

19.
20.
Highly purified tonoplast and plasmamembrane vesicles were isolated from microsomes of Catharanthus roseus (L.) G. Don. by preparative free-flow electrophoresis. The relative amounts of tonoplast and plasma-membrane vesicles in the total microsomes varied with the pH of the grinding medium. The most electronegative fractions were identified as tonoplast using nitrate-inhibited, azide-resistant Mg2+-ATPase and pyrophosphatase activities as enzyme markers. The least electronegative fractions were identified as plasma membrane using glucan-synthase-II and UDPG:sterolglucosyl-transferase activities as enzyme markers. Other membrane markers, latent inosine-5-diphosphatase (Golgi), NADPH-cytochrome-c reductase (ER) and cytochrome-c oxidase (mitochondria) were recovered in the fractions intermediate between tonoplast and plasma membrane and did not contaminate either the tonoplast or the plasma-membrane fractions. In the course of searching for a reliable marker for tonoplast, the pyrophosphatase activity was found to be essentially associated with the tonoplast fractions purified by free-flow electrophoresis from C. roseus and other plant materials. The degree of sealing of the tonoplast and plasmamembrane vesicles was probed by their ability to pump protons (measurements of quinacrine quenching) and to generate a membrane potential (absorption spectroscopy of Oxonol VI). A critical evaluation of vesicles sidedness is presented.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - Con A concanavalin A - Cyt cytochrome - LysoPC lysophosphatidylcholine - Pi orthophoshate - PPiase pyrophosphatase - IDPase inosine-5-diphosphatase We thank Pr. Robert Dargent and André Moisan (Laboratoire de Cryptogamie, Toulouse, France) for use of their electron-microscope facilities. This work was supported by the Centre National de la Recherche Scientifique and by a grant Dynamique du fonctionnement de la vacuole from the Ministère de la Recherche et de la Technologie.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号