首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whether rapamycin has neuroprotective effects in spinal cord injury remains controversial. The present study shows that rapamycin protects neurons from death after spinal cord injury by inhibiting the secondary inflammatory response. The effects of rapamycin were tested using a myeloperoxidase assay, Western blotting, immunohistochemistry, and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The experimental results showed that after spinal cord injury, rapamycin reduced the numbers of activated microglia and neutrophils in the damage zone, lowered the expression levels of TNF‐α and IL‐1β, reduced the apoptotic cells, and increased the survival of neurons. The above data proved that rapamycin diminishes inflammatory cell activation and proliferation, downregulates the expression of inflammatory factors, reduces the microenvironmental damage effects on neurons in the acute injury phase, and thus promotes the survival of neurons. Therefore, we believe that rapamycin has neuroprotective effects in spinal cord injury.  相似文献   

2.
3Z‐3‐[(1H‐pyrrol‐2‐yl)‐methylidene]‐1‐(1‐piperidinylmethyl)‐1,3‐2H‐indol‐2‐one (Z24), a synthetic anti‐angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2‐DE and MALDI‐TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP‐nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid β‐oxidation, and oxidative phosphorylation is a potential mechanism of Z24‐induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis‐mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24‐induced hepatotoxicity.  相似文献   

3.
Objective: Green tea catechins have been shown to promote loss of body fat and to inhibit growth of many cancer cell types by inducing apoptosis. The objective of this study was to determine whether epigallocatechin gallate (EGCG), the primary green tea catechin, could act directly on adipocytes to inhibit adipogenesis and induce apoptosis. Research Methods and Procedures: Mouse 3T3‐L1 preadipocytes and mature adipocytes were used. To test the effect of EGCG on viability, cells were incubated for 3, 6, 12, or 24 hours with 0, 50, 100, or 200 μM EGCG. Viability was quantitated by MTS assay. To determine the effect of EGCG on apoptosis, adipocytes were incubated for 24 hours with 0 to 200 μM EGCG, then stained with annexin V and propidium iodide and analyzed by laser scanning cytometry. Both preadipocytes and adipocytes were also analyzed for apoptosis by terminal deoxynucleotidyl transferase dUTP nick‐end labeling assay. To determine the effect of EGCG on adipogenesis, maturing preadipocytes were incubated during the 6‐day induction period with 0 to 200 μM EGCG, then stained with Oil‐Red‐O and analyzed for lipid content. Results: EGCG had no effect on either viability or apoptosis of preconfluent preadipocytes. EGCG also did not affect viability of mature adipocytes; however, EGCG increased apoptosis in mature adipocytes, as demonstrated by both laser scanning cytometry and terminal deoxynucleotidyl transferase dUTP nick‐end labeling assays. Furthermore, EGCG dose‐dependently inhibited lipid accumulation in maturing preadipocytes. Discussion: These results demonstrate that EGCG can act directly to inhibit differentiation of preadipocytes and to induce apoptosis of mature adipocytes and, thus, could be an important adjunct in the treatment of obesity.  相似文献   

4.
β‐Hydroxybutyrate (BHB), one of ketone body, has been traditionally regarded as an alternative carrier of energy, but recent studies found that BHB plays versatile roles in inflammation. It has been previously reported that the level BHB declined in mice with lipopolysaccharide (LPS)/d ‐galactosamine (d ‐Gal)‐induced liver damage, but the pathological significance remains unclear. In the present study, the pathophysiological roles of BHB in LPS/d ‐Gal‐induced hepatic damage has been investigated. The results indicated pretreatment with BHB further enhanced LPS/d ‐Gal‐induced elevation of aspartate aminotransferase and alanine aminotransferase, exacerbated the histological abnormalities and increased the mortality. Pretreatment with BHB upregulated the level of tumor necrosis factor α and interleukin‐6 in plasma, promoted the activities of caspase‐3, caspase‐8, and caspase‐9 and increased the count of terminal deoxynucleotidyl transferase dUTP nick end labeling‐positive cells. In addition, post‐insult supplement with BHB also potentiated LPS/d ‐Gal‐induced apoptotic liver damage. Therefore, BHB might be a detrimental factor in LPS/d ‐Gal‐induced liver injury via enhancing the inflammation and the apoptosis in the liver.  相似文献   

5.
Oxidative stress contributes to cancer pathologies and to apoptosis. Marine algae exhibit cytotoxic, antiproliferative and apoptotic effects; their metabolites have been used to treat many types of cancer. We investigated in culture extracts of Petalonia fascia, Jania longifurca and Halimeda tuna to determine their effects on mouse neuroblastoma cell line, NA2B. NA2B cells were treated with algae extracts, and the survival and proliferation of NA2B cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of algae extracts on oxidative stress in NA2B cells also were investigated using nitric oxide synthase (NOS) immunocytochemistry and apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling. We observed significant neurite inhibition with moderate damage by the neurotoxicity-screening test (NST) at IC50 dilutions of the extracts. MTT demonstrated that J. longifurca extracts were more toxic than P. fascia and H. tuna extracts. We found an increase of endothelial and inducible NOS immunostaining for oxidative stress and TUNEL analysis revealed increased apoptosis after application of extract. Our findings suggest that the algae we tested may have potential use for treatment of cancer.  相似文献   

6.
In different retrospective studies, a protective role of regional anesthetics in reducing cancer recurrence after surgery was indicated. Accordingly, it has been previously demonstrated a protective effect of anesthetics in breast cancer cells and in other types of cancer. On the other hand, how anesthetics influence cancer needs in-depth investigations. For this purpose, two different human cancer cell lines, MDA-MB-231, triple-negative breast cancer, and A375, melanoma, were used in this study. By means of Western blotting and immunofluorescence and terminal deoxynucleotidyl transferase dUTP nick end labeling analyses, the signal transduction pathways activated by the anesthetics, such as ropivacaine and levobupivacaine, were analyzed. The data obtained demonstrated that both anesthetics are able to counteract cell proliferation by positively modulating cell death signaling and by decreasing cell proliferation and survival pathways.  相似文献   

7.
8.
Our previous studies have assessed ginsenoside Rg1 (Rg1)‐mediated protection in a type 1 diabetes rat model. To uncover the mechanism through which Rg1 protects against cardiac injury induced by diabetes, we mimicked diabetic conditions by culturing H9C2 cells in high glucose/palmitate. Rg1 had no toxic effect, and it alleviated the high glucose/palmitate damage in a dose‐dependent manner, as indicated by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and lactate dehydrogenase release to the culture medium. Rg1 prevented high glucose/palmitate‐induced cell apoptosis, assessed using cleaved caspase‐3 and terminal deoxynucleotidyl transferase dUTP nick end labelling staining. Rg1 also reduced high glucose‐/palmitate‐induced reactive oxygen species formation and increased intracellular antioxidant enzyme activity. We found that Rg1 activates protein kinase B (AKT)/glycogen synthase kinase‐3 (GSK‐3β) pathway and antioxidant nuclear factor erythroid 2‐related factor 2 (Nrf2) pathway, indicated by increased phosphorylation of AKT and GSK‐3β, and nuclear translocation of Nrf2. We used phosphatidylinositol‐3‐kinase inhibitor Ly294002 to block the activation of the AKT/GSK‐3β pathway and found that it partially reversed the protection by Rg1 and decreased Nrf2 pathway activation. The results suggest that Rg1 exerts a protective effect against high glucose and palmitate damage that is partially AKT/GSK‐3β/Nrf2‐mediated. Further studies are required to validate these findings using primary cardiomyocytes and animal models of diabetes.  相似文献   

9.
The objective of this study was to investigate the specific role of nitric oxide (NO) in the early response of hulless barley roots to copper (Cu) stress. We used the fluorescent probe diaminofluorescein-FM diacetate to establish NO localization, and hydrogen peroxide (H2O2)-special labeling and histochemical procedures for the detection of reactive oxygen species (ROS) in the root apex. An early production of NO was observed in Cu-treated root tips of hulless barley, but the detection of NO levels was decreased by supplementation with a NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO). Application of sodium nitroprusside (a NO donor) relieved Cu-induced root inhibition, ROS accumulation and oxidative damage, while c-PTIO treatment had a synergistic effect with Cu and further enhanced ROS levels and oxidative stress. In addition, the Cu-dependent increase in activities of superoxide dismutase, peroxidase and ascorbate peroxidase were further enhanced by exogenous NO, but application of c-PTIO decreased the activities of catalase and ascorbate peroxidase in Cu-treated roots. Subsequently, cell death was observed in root tips and was identified as a type of programed cell death (PCD) by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The addition of NO prevented the increase of cell death in root tips, whereas inhibiting NO accumulation further increased the number of cells undergoing PCD. These results revealed that NO production is an early response of hulless barley roots to Cu stress and that NO contributes to Cu tolerance in hulless barley possibly by modulating antioxidant defense, subsequently reducing oxidative stress and PCD in root tips.  相似文献   

10.
意大利蜜蜂胚后发育过程中中肠上皮组织细胞的更替   总被引:1,自引:0,他引:1  
李兆英 《昆虫学报》2011,54(10):1127-1132
中肠是昆虫消化、 吸收营养物质的主要部位。本研究通过形态解剖、 BrdU免疫组织化学和原位末端转移酶标记(TUNEL)细胞凋亡检测等技术, 对意大利蜜蜂Apis mellifera ligustica中肠胚后发育过程中细胞的增殖和凋亡模式进行了比较研究。结果表明:意大利蜜蜂幼虫发育早期, 中肠的增加主要来自于上皮细胞的分裂以及再生细胞的增殖。在变态发育期间, 中肠上皮经历了广泛的重组, 由再生细胞重新形成的蛹上皮替代了幼虫上皮。再生细胞在蜜蜂中肠的整个发育阶段始终存在, 为中肠的生长和更替提供了主要的细胞来源。本研究为昆虫组织细胞自噬和凋亡机制的研究提供一定的证据。  相似文献   

11.
Piscirickettsia salmonis is the etiologic agent of the salmonid rickettsial septicemia (SRS) which causes significant losses in salmon production in Chile and other and in other regions in the southern hemisphere. As the killing of phagocytes is an important pathogenic mechanism for other bacteria to establish infections in vertebrates, we investigated whether P. salmonis kills trout macrophages by apoptosis. Apoptosis in infected macrophages was demonstrated by techniques based on morphological changes and host cell DNA fragmentation. Transmission electron microcopy showed classic apoptotic characteristics and terminal deoxynucleotidyl transferase‐mediated dUTP nick end labeling showed fragmented DNA. Programmed cell death type I was further confirmed by increased binding of annexin V to externalized phosphatidylserine in infected macrophages. Moreover, significant increases of caspase 3 activation were detected in infected cells and treatment with caspase inhibitor caused a decrease in levels of apoptosis. This is the first evidence that P. salmonis induces cell death in trout macrophages. This could lead to bacterial survival and evasion of the host immune response and play an important role in the establishment of infection in the host. J. Cell. Biochem. 110: 468–476, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Hepatic ischemia‐reperfusion (IR) injury is a common clinical problem and ROS may be a contributing factor on IR injury. The current study evaluates the potential protective effect of saffron ethanol extract (SEE) in a rat model upon hepatic IR injury. Caspases 3 and terminal deoxynucleotidyl transferase‐mediated dUTP biotin nick end labeling (TUNEL) results showed increased cell death in the IR samples; reversely, minor apoptosis was detected in the SEE/IR group. Pretreatment with SEE significantly restored the content of antioxidant enzymes (SOD1 and catalase) and remarkably inhibited the intracellular ROS concentration in terms of reducing p47phox translocation. Proteome tools revealed that 20 proteins were significantly modulated in protein intensity between IR and SEE/IR groups. Particularly, SEE administration could attenuate the carbonylation level of several chaperone proteins. Network analysis suggested that saffron extract could alleviate IR‐induced ER stress and protein ubiquitination, which finally lead to cell apoptosis. Taken together, SEE could reduce hepatic IR injury through modulating protein oxidation and our results might help to develop novel therapeutic strategies against ROS‐caused diseases.  相似文献   

13.
14.
The aim of this study was to explore the effects of platelet‐rich plasma on gingipain‐caused changes in cell morphology and apoptosis of osteoblasts. Mouse osteoblasts MC3T3‐E1 cells were treated with gingipain extracts from Porphyromonas gingivalis in the presence or absence of platelet‐rich plasma. Apoptosis was detected with terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling staining. F‐actin was determined by phalloidin‐fluorescent staining and observed under confocal microscopy. Western blot analysis was used to detect integrin β1, F‐actin, and G‐actin protein expressions. A knocking down approach was used to determine the role of integrin β1. The platelet‐rich plasma protected osteoblasts from gingipain‐induced apoptosis in a dose‐dependent manner, accompanied by upregulation of integrin β1. Platelet‐rich plasma reversed the loss of F‐actin integrity and decrease of F‐actin/G‐actin ratio in osteoblasts in the presence of gingipains. By contrast, the effects of platelet‐rich plasma were abrogated by knockdown of integrin β1. The platelet‐rich plasma failed to reduce cell apoptosis and reorganize the cytoskeleton after knockdown of integrin β1. In conclusion, platelet‐rich plasma inhibits gingipain‐induced osteoblast apoptosis and actin cytoskeleton disruption by upregulating integrin β1 expression.  相似文献   

15.
This study was aimed to investigate the ability of a flavonoid compound breviscapine (BVP) to suppress growth and elicit apoptosis in human osteosarcoma (OS) Saos‐2 cells. The cells were cultured in vitro and treated with three concentrations of BVP (80, 160, and 320 μg/ml). Moreover, C57 mice were injected with Saos‐2 cells to establish a subcutaneous xenograft model, and they were subsequently treated with three doses of BVP via intraperitoneal injection. The viability of the cells was examined by the Cell Counting Kit‐8 method. The apoptotic cells were assessed by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The tumor volume and weight were monitored from day 3 through day 21 after the last injection. The expression of bax, bcl‐2, and cytochrome c (cyt c) mRNA was detected by a real‐time polymerase chain reaction. The protein levels of bax, bcl‐2, cyt c, caspase 3, and caspase 9 were evaluated by Western blot. The expression and distribution of bcl‐2 and bax in tissues were detected by immunohistochemistry. Compared with the control group, BVP treatment inhibited cell proliferation and induced apoptosis of Saos‐2 cells in vitro. Consistently, treatment of mice bearing transplanted tumors with BVP suppressed the growth of OS tumors and promoted cell apoptosis; it also reduced tumor volume and weight. Mechanistically, BVP‐induced apoptosis was mediated by the mitochondria‐dependent pathway, as evidenced by the increased expression of bax and cyt c and the decreased expression of bcl‐2, as well as activation of caspase 9 and caspase 3 in vitro and in vitro. Collectively, BVP inhibits growth and promotes apoptosis of OS by activating the mitochondrial apoptosis pathway.  相似文献   

16.
Stressful stimuli induce two distinct cellular reactions, the heat‐shock (stress) response and programmed cell death. This study utilizes a dual procedure involving immunocytochemistry for heat‐shock protein localization and the terminal deoxynucleotidyl transferase‐mediated deoxyuridine triphosphate nick‐end labeling (TUNEL) assay for localization of cell death at the cellular level. Whole‐body hyperthermia resulted in cell death in the adult rat thymus and testis with a robust signal seen in the testis. Distinct populations of constitutively expressed Hsc70‐positive cells and TUNEL‐positive cells were apparent. Cellular layers that exhibited high levels of Hsc70 were not triggered into cell death by the thermal stress. High expression of Hsc70 was observed in neuronal populations in the dentate gyrus, CA1 and CA2 region of the hippocampus and Purkinje neurons of the cerebellum. Hyperthermia‐induced cell death was not observed in these neuronal cell types, suggesting that neuronal expression of constitutive Hsc70 may play roles in preprotecting neurons from stressful stimuli.  相似文献   

17.
Chlamydomonas reinhardtii (Ehrenberg) cells exhibited cell death process akin to that of apoptosis when exposed to ultraviolet (UV)‐C irradiation (1–100 J/m2). We observed typical hallmarks of apoptosis including cell shrinkage, associated nuclear morphological changes, flipping of phosphatidylserine, and DNA fragmentation detected by the terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labeling assay and oligonucleosomal DNA laddering assay. Interestingly, fluorescence imaging of DNA changes in UV‐C exposed cells, following PicoGreen staining, revealed that extra‐nuclear DNA disintegrates before that of nuclear changes, where the latter extensively diffuses out of the nuclear compartment, spreading into the whole cell and reaching the periphery of dying cells. Antibodies against a mammalian caspase‐3 shared epitopes with a protein of 28 kDa; whose pattern of expression correlated with the onset of cell death. Moreover, growth experiments indicate that spent medium recovered from UV‐C exposed cells exhibit a protective effect against cell killing of fresh cultures of C. reinhardtii cells by UV irradiation. The protective effect of UV‐spent medium is not a general growth promotional response on normal cells, but rather, is specific to UV‐exposed cells. We propose a model that C. reinhardtii cells exposed to UV elicit apoptotic‐like changes, which in turn lead to an adaptive response in neighboring cells against fresh rounds of UV exposure, thereby promoting survival of the cell population.  相似文献   

18.
氧化修饰LDL诱导U937细胞凋亡及其机制探讨   总被引:6,自引:0,他引:6  
用氧化修饰低密度脂蛋白(ox-LDL)诱导人髓系白血病细胞株U937细胞凋亡,并研究其作用机制.用脱氧核苷酸转移酶介导的dUTP切口末端标记技术(TUNEL法)、流式细胞仪和DNA断裂分析检测细胞凋亡;用免疫组化检测c-fos、c-jun和c-myc蛋白表达,RT-PCR显示c-fos、c-jun和c-myc mRNA表达水平.结果表明ox-LDL可致U937细胞凋亡,其作用具有浓度效应;ox-LDL可以上调c-fos、c-jun和c-myc基因表达,使c-fos、c-jun和c-myc蛋白合成增多,最终诱导U937细胞凋亡.  相似文献   

19.
20.
Epigallocatechin gallate (EGCG), a major component of tea, has known effects on obesity, fatty liver, and obesity‐related cancer. We explored the effects of EGCG on the differentiation of bovine mesenchymal stem cells (BMSCs, which are multipotent) in a dose‐ and time‐dependent manner. Differentiating BMSCs were exposed to various concentrations of EGCG (0, 10, 50, 100, and 200 µM) for 2, 4, and 6 days. BMSCs were cultured in Dulbecco's modified Eagle's medium (DMEM)/high‐glucose medium with adipogenic inducers for 6 days, and the expression levels of various genes involved in adipogenesis were measured using real‐time polymerase chain reaction (PCR) and Western blotting. We assessed apoptosis by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick‐end labeling (TUNEL) staining of control and EGCG‐exposed cells. We found that EGCG significantly suppressed fat deposition and cell viability (P < 0.05). The mRNA and protein levels of various adipogenic factors were measured. Expression of the genes encoding peroxisome proliferator‐activated receptor gamma (PPARG), CCAAT/enhancer‐binding protein alpha (CEBPA), fatty acid‐binding protein 4 (FABP4), and stearoyl‐CoA desaturase (SCD) were diminished by EGCG during adipogenic differentiation (P < 0.05). We also found that EGCG lowered the expression levels of the adipogenic proteins encoded by these genes (P < 0.05). EGCG induced apoptosis during adipogenic differentiation (P < 0.05). Thus, exposure to EGCG potentially inhibits adipogenesis by triggering apoptosis; the data suggest that EGCG inhibits adipogenic differentiation in BMSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号