首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth and productivity of rice (Oryza sativa L.) are severely affected by salinity. Understanding the mechanisms that protect rice and other important cereal crops from salt stress will help in the development of salt‐stress‐tolerant strains. In this study, rice seedlings of the same genetic species with various salt tolerances were studied. We first used 2DE to resolve the expressed proteome in rice roots and leaves and then used nanospray liquid chromatography/tandem mass spectrometry to identify the differentially expressed proteins in rice seedlings after salt treatment. The 2DE assays revealed that there were 104 differentially expressed protein spots in rice roots and 59 in leaves. Then, we identified 83 proteins in rice roots and 61 proteins in rice leaves by MS analysis. Functional classification analysis revealed that the differentially expressed proteins from roots could be classified into 18 functional categories while those from leaves could be classified into 11 functional categories. The proteins from rice seedlings that most significantly contributed to a protective effect against increased salinity were cysteine synthase, adenosine triphosphate synthase, quercetin 3‐O‐methyltransferase 1, and lipoxygenase 2. Further analysis demonstrated that the primary mechanisms underlying the ability of rice seedlings to tolerate salt stress were glycolysis, purine metabolism, and photosynthesis. Thus, we suggest that differentially expressed proteins may serve as marker group for the salt tolerance of rice.  相似文献   

2.
Salinity is a major constraint on rice productivity worldwide. However, mechanisms of salt tolerance in wild rice relatives are unknown. Root microsomal proteins are extracted from two Oryza australiensis accessions contrasting in salt tolerance. Whole roots of 2‐week‐old seedlings are treated with 80 mM NaCl for 30 days to induce salt stress. Proteins are quantified by tandem mass tags (TMT) and triple‐stage Mass Spectrometry. More than 200 differentially expressed proteins between the salt‐treated and control samples in the two accessions (p‐value <0.05) are found. Gene Ontology (GO) analysis shows that proteins categorized as “metabolic process,” “transport,” and “transmembrane transporter” are highly responsive to salt treatment. In particular, mitochondrial ATPases and SNARE proteins are more abundant in roots of the salt‐tolerant accession and responded strongly when roots are exposed to salinity. mRNA quantification validated the elevated protein abundances of a monosaccharide transporter and an antiporter observed in the salt‐tolerant genotype. The importance of the upregulated monosaccharide transporter and a VAMP‐like protein by measuring salinity responses of two yeast knockout mutants for genes homologous to those encoding these proteins in rice are confirmed. Potential new mechanisms of salt tolerance in rice, with implications for breeding of elite cultivars are also discussed.  相似文献   

3.
Salinity poses a serious threat to yield performance of cultivated rice in South Asian countries. To understand the mechanism of salt-tolerance of the wild halophytic rice, Porteresia coarctata in contrast to the salt-sensitive domesticated rice Oryza sativa, we have compared P. coarctata with the domesticated O. sativa rice varieties under salinity stress with respect to several physiological parameters and changes in leaf protein expression. P. coarctata showed a better growth performance and biomass under salinity stress. Relative water content was conserved in Porteresia during stress and sodium ion accumulation in leaves was comparatively lesser. Scanning electron microscopy revealed presence of two types of salt hairs on two leaf surfaces, each showing a different behaviour under stress. High salt stress for prolonged period also revealed accumulation of extruded NaCl crystals on leaf surface. Changes induced in leaf proteins were studied by two-dimensional gel electrophoresis and subsequent quantitative image analysis. Out of more than 700 protein spots reproducibly detected and analyzed, 60% spots showed significant changes under salinity. Many proteins showed steady patterns of up- or downregulation in response to salinity stress. Twenty protein spots were analyzed by MALDI-TOF, leading to identification of 16 proteins involved in osmolyte synthesis, photosystem functioning, RubisCO activation, cell wall synthesis and chaperone functions. We hypothesize that some of these proteins confer a physiological advantage on Porteresia under salinity, and suggest a pattern of salt tolerance strategies operative in salt-marsh grasses. In addition, such proteins may turn out to be potential targets for recombinant cloning and introgression in salt-sensitive plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
Salinity is a deleterious abiotic stress factor that affects growth, productivity, and physiology of crop plants. Strategies for improving salinity tolerance in plants are critical for crop breeding programmes. Here, we characterized the rice (Oryza sativa) really interesting new gene (RING) H2‐type E3 ligase, OsSIRH2‐14 (previously named OsRFPH2‐14), which plays a positive role in salinity tolerance by regulating salt‐related proteins including an HKT‐type Na+ transporter (OsHKT2;1). OsSIRH2‐14 expression was induced in root and shoot tissues treated with NaCl. The OsSIRH2‐14‐EYFP fusion protein was predominately expressed in the cytoplasm, Golgi, and plasma membrane of rice protoplasts. In vitro pull‐down assays and bimolecular fluorescence complementation assays revealed that OsSIRH2‐14 interacts with salt‐related proteins, including OsHKT2;1. OsSIRH2‐14 E3 ligase regulates OsHKT2;1 via the 26S proteasome system under high NaCl concentrations but not under normal conditions. Compared with wild type plants, OsSIRH2‐14‐overexpressing rice plants showed significantly enhanced salinity tolerance and reduced Na+ accumulation in the aerial shoot and root tissues. These results suggest that the OsSIRH2‐14 RING E3 ligase positively regulates the salinity stress response by modulating the stability of salt‐related proteins.  相似文献   

6.
7.
8.
Salinity is one of the major environmental limiting factors that affects growth and productivity of rice (Oryza sativa L.) worldwide. Rice is among the most sensitive crops to salinity, especially at early vegetative stages. In order to get a better understanding of molecular pathways affected in rice mutants showing contrasting responses to salinity, we exploited the power of 2-DE based proteomics to explore the proteome changes associated with salt stress response. Our physiological observations showed that standard evaluation system (SES) scores, Na+ and K+ concentrations in shoots and Na+/K+ ratio were significantly different in contrasting mutants under salt stress condition. Proteomics analysis showed that, out of 854 protein spots which were reproducibly detected, 67 protein spots showed significant responses to salt stress. The tandem mass spectrometry analysis of these significantly differentially accumulated proteins resulted in identification of 34 unique proteins. These proteins are involved in various molecular processes including defense to oxidative stresses, metabolisms, photosynthesis, protein synthesis and processing, signal transduction. Several of the identified proteins were emerged as key participants in salt stress tolerance. The possible implication of salt responsive proteins in plant adaptation to salt stress is discussed.  相似文献   

9.
Rice yield is severely affected by high-salt concentration in the vicinity of the plant. In an effort to engineer rice for improved salt tolerance Agrobacterium-mediated transformation of rice cv. Binnatoa was accomplished with the Pennisetum glaucum vacuolar Na+/H+ antiporter gene (PgNHX1) under the constitutive CaMV35S promoter. For the molecular analysis of putative transgenic plants, PCR and RT-PCR were performed. Transgenic rice plants expressing PgNHX1 showed better physiological status and completed their life cycle by setting flowers and seeds in salt stress, while wild-type plants exhibited rapid chlorosis and growth inhibition. Moreover, transgenic rice plants produced higher grain yields than wild-type plants under salt stress. Assessment of the salinity tolerance of the transgenic plants at seedling and reproductive stages demonstrated the potential of PgNHX1 for imparting enhanced salt tolerance capabilities and improved yield.  相似文献   

10.
Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX) activity and anthocyanins were observed for all cultivars. The K+/Na+ ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K+/Na+ ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA) based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT), a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K+/Na+ ratio and chlorophyll accumulation.  相似文献   

11.
To overcome the salinity‐induced loss of crop yield, a salinity‐tolerant trait is required. The SUV3 helicase is involved in the regulation of RNA surveillance and turnover in mitochondria, but the helicase activity of plant SUV3 and its role in abiotic stress tolerance have not been reported so far. Here we report that the Oryza sativa (rice) SUV3 protein exhibits DNA and RNA helicase, and ATPase activities. Furthermore, we report that SUV3 is induced in rice seedlings in response to high levels of salt. Its expression, driven by a constitutive cauliflower mosaic virus 35S promoter in IR64 transgenic rice plants, confers salinity tolerance. The T1 and T2 sense transgenic lines showed tolerance to high salinity and fully matured without any loss in yields. The T2 transgenic lines also showed tolerance to drought stress. These results suggest that the introduced trait is functional and stable in transgenic rice plants. The rice SUV3 sense transgenic lines showed lesser lipid peroxidation, electrolyte leakage and H2O2 production, along with higher activities of antioxidant enzymes under salinity stress, as compared with wild type, vector control and antisense transgenic lines. These results suggest the existence of an efficient antioxidant defence system to cope with salinity‐induced oxidative damage. Overall, this study reports that plant SUV3 exhibits DNA and RNA helicase and ATPase activities, and provides direct evidence of its function in imparting salinity stress tolerance without yield loss. The possible mechanism could be that OsSUV3 helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in transgenic rice.  相似文献   

12.
Recent approaches to study of salinity tolerance in crop plants have ranged from genetic mapping to molecular characterization of gene products induced by salt/drought stress. Transgenic plant design has allowed to test the effects of overexpression of specific prokaryotic or plant genes that are known to be up-regulated by salt/drought stress. This review summarizes current progress in the field in the context of adaptive metabolic and physiological responses to salt stress and their potential role in long term tolerance. Specifically considered are gene activation by salt, in view of proposed avenues for improved salt tolerance and the need to ascertain the additional influences of developmental regulation of such genes. Discussion includes the alternate genetic strategy we have pursued for improving salinity tolerance in alfalfa (Medicago sativa L.) and rice (Oryza sativa L.). This strategy combines single-step selection of salt-tolerant cells in culture, followed by regeneration of salt-tolerant plants and identification of genes important in conferring salt tolerance. We have postulated that activation or improved expression of a subset of genes encoding functions that are particularly vulnerable under conditions of salt-stress could counteract the molecular effects of such stress and could provide incremental improvements in tolerance. We have proceeded to identify the acquired specific changes in gene regulation for our salt-tolerant mutant cells and plants. One particularly interesting and novel gene isolate from the salt-tolerant cells is Alfin1, which encodes a putative zinc-finger regulatory protein, expressed predominantly in roots. We have demonstrated that this protein binds DNA in a sequence specific manner and may be potentially important in gene regulation in roots in response to salt and an important marker for salt tolerance in crop plants.  相似文献   

13.
Salinity and alkalinity are the two main environmental factors that limit rice production. Better understanding of the mechanisms responsible for salinity and alkaline stress tolerance would allow researchers to modify rice to increase its resistance to salinity and alkaline stress. MicroRNAs (miRNAs) are ~21-nucleotide RNAs that are ubiquitous regulators of gene expression in eukaryotic organisms. Some miRNAs acts as an important endogenous regulator in plant responses to abiotic stressors. miR393 is a conservative miRNA family that occurs in a variety of different plants. The two members of the miR393 family found in rice are named osa-MIR393 and osa-MIR393b. We found that the osa-MIR393 expression level changed under salinity and alkaline stress, whereas that of osa-MIR393b did not. Target genes of osa-MIR393 were predicted, and some of these putative targets are abiotic related genes. Furthermore, we generated transgenic rice and Arabidopsis thaliana that over-expressed osa-MIR393, and the phenotype analysis showed that these transgenic plants were more sensitive to salt and alkali treatment compared to wild-type plants. These results illustrate that over-expression of osa-MIR393 can negatively regulate rice salt-alkali stress tolerance.  相似文献   

14.
Seed imbibition and radicle emergence are generally less affected by salinity in soybean than in other crop plants. In order to unveil the mechanisms underlying this remarkable salt tolerance of soybean at seed germination, a comparative label‐free shotgun proteomic analysis of embryonic axes exposed to salinity during germination sensu stricto (GSS) was conducted. The results revealed that the application of 100 and 200 mmol/L NaCl stress was accompanied by significant changes (>2‐fold, P<0.05) of 97 and 75 proteins, respectively. Most of these salt‐responsive proteins (70%) were classified into three major functional categories: disease/defense response, protein destination and storage and primary metabolism. The involvement of these proteins in salt tolerance of soybean was discussed, and some of them were suggested to be potential salt‐tolerant proteins. Furthermore, our results suggest that the cross‐protection against aldehydes, oxidative as well as osmotic stress, is the major adaptive response to salinity in soybean.  相似文献   

15.
Salt stress is a complex physiological trait affecting plants by limiting growth and productivity. Rice, one of the most important food crops, is rated as salt‐sensitive. High‐throughput screening methods are required to exploit novel sources of genetic variation in rice and further improve salinity tolerance in breeding programmes. To search for genotypic differences related to salt stress, we genotyped 392 rice accessions by EcoTILLING. We targeted five key salt‐related genes involved in mechanisms such as Na+/K+ ratio equilibrium, signalling cascade and stress protection, and we found 40 new allelic variants in coding sequences. By performing association analyses using both general and mixed linear models, we identified 11 significant SNPs related to salinity. We further evaluated the putative consequences of these SNPs at the protein level using bioinformatic tools. Amongst the five nonsynonymous SNPs significantly associated with salt‐stress traits, we found a T67K mutation that may cause the destabilization of one transmembrane domain in OsHKT1;5, and a P140A alteration that significantly increases the probability of OsHKT1;5 phosphorylation. The K24E mutation can putatively affect SalT interaction with other proteins thus impacting its function. Our results have uncovered allelic variants affecting salinity tolerance that may be important in breeding.  相似文献   

16.
17.
18.
19.
Glycine betaine has been reported as an osmoprotectant compound conferring tolerance to salinity and osmotic stresses in plants. We previously found that the expression of betaine aldehyde dehydrogenase 1 gene (OsBADH1), encoding a key enzyme for glycine betaine biosynthesis pathway, showed close correlation with salt tolerance of rice. In this study, the expression of the OsBADH1 gene in transgenic tobacco was investigated in response to salt stress using a transgenic approach. Transgenic tobacco plants expressing the OsBADH1 gene were generated under the control of a promoter from the maize ubiquitin gene. Three homozygous lines of T2 progenies with single transgene insert were chosen for gene expression analysis. RT-PCR and western blot analysis results indicated that the OsBADH1 gene was effectively expressed in transgenic tobacco leading to the accumulation of glycine betaine. Transgenic lines demonstrated normal seed germination and morphology, and normal growth rates of seedlings under salt stress conditions. These results suggest that the OsBADH1 gene could be an excellent candidate for producing plants with osmotic stress tolerance.  相似文献   

20.
To gain a better understanding of the mechanism of rice (Oryza sativa L.) in response to salt stress, we performed a proteomics analysis of rice in response to 250 mM NaCl treatment using shoots of 3-day-old nascent seedlings. The changes of protein patterns were monitored with two-dimensional gel electrophoresis. Of 57 protein spots showing changes in abundance in response to salt stress, 52 were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The identified proteins were classified into eight functional categories. Several novel salt stress-responsive proteins, including protein synthesis inhibitor I, photosystem II stability/assembly factor HCF136, trigger factor-like protein and cycloartenol-C24-methyltransferase are upregulated upon salt stress. In order to figure out the different and similar molecular mechanism among salt and other stresses, regulation of some salt responsive proteins under other abiotic stress (cold and dehydration) and abscisic acid application was also analyzed. The possible molecular mechanism of rice seedlings in response to salinity and other stresses were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号