首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O‐GlcNAcylation is a dynamic PTM of nuclear and cytoplasmic proteins, regulated by O‐GlcNAc transferase (OGT) and O‐GlcNAcase, which catalyze the addition and removal of O‐GlcNAc, respectively. This modification is associated with glucose metabolism, which plays important roles in many diseases including cancer. Although emerging evidence reveals that some tumor‐associated proteins are O‐GlcNAc modified, the total O‐GlcNAcylation in cancer is still largely unexplored. Here, we demonstrate that O‐GlcNAcylation was increased in primary breast malignant tumors, not in benign tumors and that this augmentation was associated with increased expression of OGT level. Using 2D O‐GlcNAc immnoblotting and LC‐MS/MS analysis, we successfully identified 29 proteins, with seven being uniquely O‐GlcNAcylated or associated with O‐GlcNAcylation in cancer. Of these identified proteins, some were related to the Warburg effect, including metabolic enzymes, proteins involved in stress responses and biosynthesis. In addition, proteins associated with RNA metabolism, gene expression, and cytoskeleton were highly O‐GlcNAcylated or associated with O‐GlcNAcylation. Moreover, OGT knockdown showed that decreasing O‐GlcNAcylation was related to inhibition of the anchorage‐independent growth in vitro. These data indicate that aberrant protein O‐GlcNAcylation is associated with breast cancer. Abnormal modification of these O‐GlcNAc‐modified proteins might be one of the vital malignant characteristics of cancer.  相似文献   

2.
Colorectal cancer (CRC) affects both women and men living in societies with a high sedentary lifestyle. Amongst the phenotypic changes exhibited by tumor cells, a wide range of glycosylation has been reported for colon cancer‐derived cell lines and CRC tissues. These aberrant modifications affect different aspects of glycosylation, including an increase in core fucosylation and GlcNAc branching on N‐glycans, alteration of O‐glycans, upregulated sialylation, and O‐GlcNAcylation. Although O‐GlcNAcylation and complex glycosylations differ in many aspects, sparse evidences report on the interference of O‐GlcNAcylation with complex glycosylation. Nevertheless, this relationship is still a matter of debate. Combining different approaches on three human colon cell lines (HT29, HCT116 and CCD841CoN), it is herein reported that silencing O‐GlcNAc transferase (OGT, the sole enzyme driving O‐GlcNAcylation), only slightly affects overall N‐ and O‐glycosylation patterns. Interestingly, silencing of OGT in HT29 cells upregulates E‐cadherin (a major actor of epithelial‐to‐mesenchymal transition) and changes its glycosylation. On the other hand, OGT silencing perturbs biosynthesis of glycosphingolipids resulting in a decrease in gangliosides and an increase in globosides. Together, these results provide novel insights regarding the selective regulation of complex glycosylations by O‐GlcNAcylation in colon cancer cells.  相似文献   

3.
4.
5.
Meiotic maturation and fertilization are metabolically demanding processes, and thus the mammalian oocyte is highly susceptible to changes in nutrient availability. O‐GlcNAcylation—the addition of a single sugar residue (O‐linked β‐N‐acetylglucosamine) on proteins—is a posttranslational modification that acts as a cellular nutrient sensor and likely modulates the function of oocyte proteins. O‐GlcNAcylation is mediated by O‐GlcNAc transferase (OGT), which adds O‐GlcNAc onto proteins, and O‐GlcNAcase (OGA), which removes it. Here we investigated O‐GlcNAcylation dynamics in bovine and human oocytes during meiosis and determined the developmental sequelae of its perturbation. OGA, OGT, and multiple O‐GlcNAcylated proteins were expressed in bovine cumulus oocyte complexes (COCs), and they were localized throughout the gamete but were also enriched at specific subcellular sites. O‐GlcNAcylated proteins were concentrated at the nuclear envelope at prophase I, OGA at the cortex throughout meiosis, and OGT at the meiotic spindles. These expression patterns were evolutionarily conserved in human oocytes. To examine O‐GlcNAc function, we disrupted O‐GlcNAc cycling during meiotic maturation in bovine COCs using Thiamet‐G (TMG), a highly selective OGA inhibitor. Although TMG resulted in a dramatic increase in O‐GlcNAcylated substrates in both cumulus cells and the oocyte, there was no effect on cumulus expansion or meiotic progression. However, zygote development was significantly compromised following in vitro fertilization of COCs matured in TMG due to the effects on sperm penetration, sperm head decondensation, and pronuclear formation. Thus, proper O‐GlcNAc homeostasis during meiotic maturation is important for fertilization and pronuclear stage development.  相似文献   

6.
O-linked N-acetylglucosaminyltransferase (OGT)-mediated protein O-GlcNAcylation has been revealing various aspects of functional significance in biological processes, such as cellular signaling and activation of immune system. We found that OGT is maintained as S-nitrosylated form in resting cells, and its denitrosylation is triggered in innate immune response of lipopolysaccharide (LPS)-treated macrophage cells. S-nitrosylation of OGT strongly inhibits its catalytic activity up to more than 80% of native OGT, and denitrosylation of OGT leads to protein hyper-O-GlcNAcylation. Furthermore, blockage of increased protein O-GlcNAcylation results in significant loss of nitric oxide and cytokine production. We propose that denitrosylation of S-nitrosylated OGT is a direct mechanism for upregulation of OGT activity by which immune defense is critically controlled in LPS-stimulated innate immune response.  相似文献   

7.
Autophagy regulates cellular homeostasis through degradation of aged or damaged subcellular organelles and components. Interestingly, autophagy-deficient beta cells, for example Atg7-mutant mice, exhibited hypoinsulinemia and hyperglycemia. Also, autophagy response is diminished in heart of diabetic mice. These results implied that autophagy and diabetes are closely connected and affect each other. Although protein O-GlcNAcylation is up-regulated in hyperglycemia and diabetes, and O-GlcNAcylated proteins play an important role in metabolism and nutrient sensing, little is known whether autophagy affects O-GlcNAc modification and vice versa. In this study, we suppressed the action of mTOR by treatment of mTOR catalytic inhibitors (PP242 and Torin1) to induce autophagic flux. Results showed a decrease in global O-GlcNAcylation, which is due to decreased OGT protein and increased OGA protein. Interestingly, knockdown of ATG genes or blocking of lysosomal degradation enhanced protein stability of OGT. In addition, when proteasomal inhibitor was treated together with mTOR inhibitor, protein level of OGT almost recovered to control level. These data suggest that mTOR inhibition is a more efficient way to reduce protein level of OGT rather than that of CHX treatment. We also showed that not only proteasomal degradation regulated OGT stability but autophagic degradation also affected OGT stability in part. We concluded that mTOR signaling regulates protein O-GlcNAc modification through adjustment of OGT stability.  相似文献   

8.
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins in multicellular organisms. O-GlcNAc modification is catalyzed by the O-GlcNAc transferase (OGT), which transfers N-acetylglucosamine (GlcNAc) from the nucleotide sugar donor UDP-GlcNAc to serine or threonine residues of protein substrates. Recently, we reported a novel metabolic labeling method to introduce the diazirine photocross-linking functional group onto O-GlcNAc residues in mammalian cells. In this method, cells are engineered to produce diazirine-modified UDP-GlcNAc (UDP-GlcNDAz), and the diazirine-modified GlcNAc analog (GlcNDAz) is transferred to substrate proteins by endogenous OGT, producing O-GlcNDAz. O-GlcNDAz-modified proteins can be covalently cross-linked to their binding partners, providing information about O-GlcNAc-dependent interactions. The utility of the method was demonstrated by cross-linking highly O-GlcNAc-modified nucleoporins to proteins involved in nuclear transport. For practical application of this method to a broader range of O-GlcNAc-modified proteins, efficient O-GlcNDAz production is critical. Here we examined the ability of OGT to transfer GlcNDAz and found that the wild-type enzyme (wtOGT) prefers the natural substrate, UDP-GlcNAc, over the unnatural UDP-GlcNDAz. This competition limits O-GlcNDAz production in cells and the extent of O-GlcNDAz-dependent cross-linking. Here we identified an OGT mutant, OGT(C917A), that efficiently transfers GlcNDAz and, surprisingly, has altered substrate specificity, preferring to transfer GlcNDAz rather than GlcNAc to protein substrates. We confirmed the reversed substrate preference by determining the Michaelis-Menten parameters describing the activity of wtOGT and OGT(C917A) with both UDP-GlcNAc and UDP-GlcNDAz. Use of OGT(C917A) enhances O-GlcNDAz production, yielding improved cross-linking of O-GlcNDAz-modified molecules both in vitro and in cells.  相似文献   

9.
目的:为了探讨O-GlcNAc糖基转移酶OGT的生理和病理作用,需制备能高效特异性检测OGT的抗体。方法:在NCBI数据库中,查找人源OGT基因序列,根据OGT的结构特点,选取OGT的C末端催化结构域中的一段多肽序列(464-949位点氨基酸)做抗原。首先,构建OGT的C末端催化结构域(464-949位点氨基酸)的重组表达载体pET30-a-OGT-C,转化至大肠杆菌BL21(DE3)感受态细胞中,IPTG诱导表达融合His标签的OGT-C蛋白,Ni+珠亲和层析法纯化提取OGT-C蛋白。再以OGT-C重组蛋白作为抗原,免疫Wistar大鼠制备多克隆抗体,并用间接ELISA法检测OGT抗体的效价,Western blotting鉴定抗体特异性。结果:多抗效价达1:80000;在免疫印迹实验中,此多抗可以高效的检测重组抗原,并可以特异性识别培养细胞内源表达的ncOGT和mOGT这2种OGT亚型。结论:实验结果表明,获得高效价、高特异性的OGT多克隆抗体,在OGT的生物学研究中可以用于检测ncOGT和mOGT的表达。  相似文献   

10.
O-GlcNAc是一种广泛存在于蛋白质丝/苏氨酸残基上的动态、可逆的蛋白翻译后修饰,它广泛分布在细胞浆和细胞核中,参与调节多种细胞途径。研究表明蛋白的O-GlcNAc糖基化与神经退行性疾病、糖尿病和癌症等疾病相关。在体内,O-GlcNAc动态修饰由N-乙酰氨基葡萄糖转移酶(OGT)和N-乙酰氨基葡萄糖苷酶(OGA)协同完成。近年来,OGT逐渐成为糖生物学领域的研究热点,在其结构、作用机制及晶体学方面取得了快速发展。  相似文献   

11.
O-GlcNAc-transferase (OGT) substrate specificity is regulated by transiently interacting proteins. To further examine the regulation of OGT, we have identified 27 putative OGT-interacting proteins through a yeast two-hybrid screen. Two of these proteins, Trak1 (OIP106) and O-GlcNAcase, have been shown previously to interact with and regulate OGT. We demonstrate here that MYPT1 and CARM1 also interact with and target OGT. MYPT1 and CARM1 are substrates of OGT in vitro and in vivo. MYPT1 and CARM1 also function to alter OGT substrate specificity in vitro. Furthermore depletion of MYPT1 in Neuro-2a neuroblastoma cells alters GlcNAcylation of several proteins under basal conditions, suggesting that MYPT1 regulates OGT substrate specificity in vivo.  相似文献   

12.
13.
14.
Nutrient-sensitive pathways regulate both O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK), cooperatively connecting metabolic homeostasis to regulation of numerous intracellular processes essential for life. Similar to phosphorylation, catalyzed by kinases such as AMPK, O-GlcNAcylation is a highly dynamic Ser/Thr-specific post-translational modification of nuclear, cytoplasmic, and mitochondrial proteins catalyzed exclusively by OGT. OGT and AMPK target a multitude of intracellular proteins, with the net effect to protect cells from the damaging effects of metabolic stress. Despite hundreds of studies demonstrating significant overlap in upstream and downstream signaling processes, no study has investigated if OGT and AMPK can directly regulate each other. We show acute activation of AMPK alters the substrate selectivity of OGT in several cell lines and nuclear localization of OGT in C2C12 skeletal muscle myotubes. Nuclear localization of OGT affects O-GlcNAcylation of numerous nuclear proteins and acetylation of Lys-9 on histone 3 in myotubes. AMPK phosphorylates Thr-444 on OGT in vitro; phosphorylation of Thr-444 is tightly associated with AMPK activity and nuclear localization of OGT in myotubes, and phospho-mimetic T444E-OGT exhibits altered substrate selectivity. Conversely, the α- and γ-subunits of AMPK are O-GlcNAcylated, O-GlcNAcylation of the γ1-subunit increases with AMPK activity, and acute inhibition of O-GlcNAc cycling disrupts activation of AMPK. We have demonstrated significant cross-talk between the O-GlcNAc and AMPK systems, suggesting OGT and AMPK may cooperatively regulate nutrient-sensitive intracellular processes that mediate cellular metabolism, growth, proliferation, and/or tissue function.  相似文献   

15.
Phosphorylation and O‐GlcNAcylation are two widespread post‐translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O‐GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N‐terminus and the beginning of the core region. In contrast with the ‘yin–yang’ mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O‐GlcNAcylated (serines Ser‐25, Ser‐81, Ser‐101 and Ser‐118). Our findings show that PPV CP can be concurrently phosphorylated and O‐GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser‐25 in virions recovered from O‐GlcNAcylation‐deficient plants, suggesting that crosstalk between O‐GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O‐GlcNAcylation in the N‐proximal segment of CP allows a fine‐tuning of protein stability, providing the amount of CP required in each step of viral infection.  相似文献   

16.
The dynamic modification of many nuclear and cytoplasmic proteins with O-linked beta-N-acetylglucosamine (O-GlcNAc) on serine or threonine is catalyzed by O-GlcNAc transferase (OGT). The conserved GPGTF (glycogen phosphorylase/glycosyl transferase) motif, one of the α-helices of the second domain in OGT, was identified as a putative UDP-GlcNAc binding site. A miniature protein was designed which contains all of the conserved residues of GPGTF motif in the O-GlcNAc transferase, and was shown to adopt an alpha helix in 10% trifluoroethanol. It was anticipated that the miniature protein could shed light on the mechanism of dynamic O-GlcNAc modification and provide a potential drug for the diabetes and neurodegenerative diseases.  相似文献   

17.
Non-healing wounds are a significant source of morbidity. This is particularly true for diabetic patients, who tend to develop chronic skin wounds. O-GlcNAc modification of serine and threonine residues is a common regulatory post-translational modification analogous to protein phosphorylation; increased intracellular protein O-GlcNAc modification has been observed in diabetic and hyperglycemic states. Two intracellular enzymes, UDP-N-acetylglucosamine-polypeptide β-N-acetylglucosaminyl transferase (OGT) and O-GlcNAc-selective N-acetyl-β-d-glucosaminidase (OGA), mediate addition and removal, respectively, of N-acetylglucosamine (GlcNAc) from intracellular protein substrates. Alterations in O-GlcNAc modification of intracellular proteins is linked to diabetes, and the increased levels of protein O-GlcNAc modification observed in diabetic tissues may in part explain some of the observed underlying pathophysiology that contributes to delayed wound healing. We have previously shown that increasing protein O-GlcNAc modification by overexpression of OGT in murine keratinocytes results in elevated protein O-GlcNAc modification and a hyperadhesive phenotype. This study was undertaken to explore the hypothesis that increased O-GlcNAc modification of cellular proteins in diabetic skin could contribute to the delayed wound healing observed in patients with diabetic skin ulcers. In the present study, we show that human keratinocytes cultured under hyperglycemic conditions display increased levels of O-GlcNAc modification as well as a delay in the rate of wound closure in vitro. We further show that specific knockdown of OGT by RNA interference (RNAi) reverses this effect, thereby opening up the opportunity for OGT-targeted therapies to promote wound healing in diabetic patients.  相似文献   

18.
19.
Post‐translational modification of proteins by O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) is catalyzed by O‐GlcNAc transferases (OGTs). O‐GlcNAc modification of proteins regulates multiple important biological processes in metazoans. However, whether protein O‐GlcNAcylation is involved in epigenetic processes during plant development is largely unknown. Here, we show that loss of function of SECRET AGENT (SEC), an OGT in Arabidopsis, leads to an early flowering phenotype. This results from reduced histone H3 lysine 4 trimethylation (H3K4me3) of FLOWERING LOCUS C (FLC) locus, which encodes a key negative regulator of flowering. SEC activates ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), a histone lysine methyltransferase (HKMT), through O‐GlcNAc modification to augment ATX1‐mediated H3K4me3 histone modification at FLC locus. SEC transfers an O‐GlcNAc group on Ser947 of ATX1, which resides in the SET domain, thereby activating ATX1. Taken together, these results uncover a novel post‐translational O‐GlcNAc modification‐mediated mechanism for regulation of HKMT activity and establish the function of O‐GlcNAc signaling in epigenetic processes in plants.  相似文献   

20.
Tetratricopeptide repeat (TPR) proteins belong to the class of α-solenoid proteins, in which repetitive units of α-helical hairpin motifs stack to form superhelical, often highly flexible structures. TPR domains occur in a wide variety of proteins, and perform key functional roles including protein folding, protein trafficking, cell cycle control and post-translational modification. Here, we look at the TPR domain of the enzyme O-linked GlcNAc-transferase (OGT), which catalyses O–GlcNAcylation of a broad range of substrate proteins. A number of single-point mutations in the TPR domain of human OGT have been associated with the disease Intellectual Disability (ID). By extended steered and equilibrium atomistic simulations, we show that the OGT-TPR domain acts as an elastic nanospring, and that each of the ID-related local mutations substantially affect the global dynamics of the TPR domain. Since the nanospring character of the OGT-TPR domain is key to its function in binding and releasing OGT substrates, these changes of its biomechanics likely lead to defective substrate interaction. We find that neutral mutations in the human population, selected by analysis of the gnomAD database, do not incur these changes. Our findings may not only help to explain the ID phenotype of the mutants, but also aid the design of TPR proteins with tailored biomechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号