首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
  相似文献   

2.
    
O‐GalNAc glycosylation is the initial step of the mucin‐type O‐glycosylation. In humans, it is catalyzed by a family of 20 homologous UDP‐GalNAc:polypeptide N‐acetylgalactosaminyltransferases (ppGalNAc‐Ts). So far, there is very limited information on their protein substrate specificities. In this study, we developed an on‐chip ppGalNAc‐Ts assay that could rapidly and systematically identify the protein substrates of each ppGalNAc‐T. In detail, we utilized a human proteome microarray as the protein substrates and UDP‐GalNAz as the nucleotide sugar donor for click chemistry detection. From a total of 16 368 human proteins, we identified 570 potential substrates of ppGalNAc‐T1, T2, and T3. Among them, 128 substrates were overlapped, while the rest were isoform specific. Further cluster analysis of these substrates showed that the substrates of ppGalNAc‐T1 had a closer phylogenetic relationship with that of ppGalNAc‐T3 compared with ppGalNAc‐T2, which was consistent with the topology of the phylogenetic tree of these ppGalNAc‐Ts. Taken together, our microarray‐based enzymatic assay comprehensively reveals the substrate profile of the ppGalNAc‐T1, T2, and T3, which not only provides a plausible explanation for their partial functional redundancy as reported, but clearly implies some specialized roles of each enzyme in different biological processes.  相似文献   

3.
    
Deciphering the whole network of protein interactions for a given proteome (‘interactome’) is the goal of many experimental and computational efforts in Systems Biology. Separately the prediction of the structure of protein complexes by docking methods is a well‐established scientific area. To date, docking programs have not been used to predict interaction partners. We provide a proof of principle for such an approach. Using a set of protein complexes representing known interactors in their unbound form, we show that a standard docking program can distinguish the true interactors from a background of 922 non‐redundant potential interactors. We additionally show that true interactions can be distinguished from non‐likely interacting proteins within the same structural family. Our approach may be put in the context of the proposed ‘funnel‐energy model’; the docking algorithm may not find the native complex, but it distinguishes binding partners because of the higher probability of favourable models compared with a collection of non‐binders. The potential exists to develop this proof of principle into new approaches for predicting interaction partners and reconstructing biological networks.  相似文献   

4.
An experimental methodology that facilitates functional analysis of numerous protein–protein interactions, which have been found in genome‐wide interactome researches, has long been awaited. We propose herein an antagonistic inhibition‐based approach. The antagonizing polypeptide is generated in the course of interaction domain mapping based on yeast 2‐hybrid (Y2H) screening coupled with in vitro convergence of the Y2H‐selected fragments, which is performed in a formatted procedure. Using the coupled methodology, we first performed a high‐resolution mapping of an interdomain interaction network within budding yeast's Dam1 complex. Dam1 complex is a kinetochore protein complex composed of 10 essential subunits including Spc34p and Spc19p. The high‐resolution mapping revealed the overall network structure within the complex for the first time: Dam1 components form into two separated subnetworks on N‐terminal scaffolding domains of Spc34p and Spc19p, and the coiled‐coil interaction in their C‐terminal domains connects the subnetworks. Secondly, we show that the domain fragments converged in the high‐resolution mapping acted as potent inhibitors for the endogenous interactions when episomally overexpressed. The in vivo Dam1 interaction targeting with the fragments conferred a similar phenotype on the host cells; a critical and irreversible damage, which was accompanied with disturbed budding and chromosome mis‐segregation as a result of disorganized spindle. These phenotypes were strongly related to the cellular function of the Dam1 complex. The results and approach we demonstrated herein not only shed light on the Dam1 molecular architecture but also pave the road to reverse‐interactome analysis and discoveries of novel drugs that target disease‐related protein–protein interactions. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
6.
    
Membrane receptor‐activated signal transduction pathways are integral to cellular functions and disease mechanisms in humans. Identification of the full set of proteins interacting with membrane receptors by high‐throughput experimental means is difficult because methods to directly identify protein interactions are largely not applicable to membrane proteins. Unlike prior approaches that attempted to predict the global human interactome, we used a computational strategy that only focused on discovering the interacting partners of human membrane receptors leading to improved results for these proteins. We predict specific interactions based on statistical integration of biological data containing highly informative direct and indirect evidences together with feedback from experts. The predicted membrane receptor interactome provides a system‐wide view, and generates new biological hypotheses regarding interactions between membrane receptors and other proteins. We have experimentally validated a number of these interactions. The results suggest that a framework of systematically integrating computational predictions, global analyses, biological experimentation and expert feedback is a feasible strategy to study the human membrane receptor interactome.  相似文献   

7.
8.
RNA-binding proteins can strongly regulate and influence the cellular function and fate of an RNA molecule. Of the many described nucleic acid-binding domains, the double-stranded RNA-binding domain (dsRBD) is a highly specialized example found in a wide variety of proteins with diverse cellular functions. Mostly present in multiple copies and highly homologous to one another, the individual functional specificity of dsRBDs is now becoming apparent. Here we review recent evidence showing that single dsRBDs within individual proteins are capable of distinct in vivo functions. Not only does this enable dsRBD-containing proteins to increase their functional diversity but it also reveals novel and unexpected roles that dsRBDs can perform.  相似文献   

9.
    
With recent progress in the analysis of the salivary proteome, the number of salivary proteins identified has increased dramatically. However, the physiological functions of many of the newly discovered proteins remain unclear. Closely related to the study of a protein's function is the identification of its interaction partners. We investigated interactions among and functions of histatin 1 and the other proteins that are present in saliva by using high‐throughput mass spectrometric techniques. This led to the identification of 43 proteins able to interact with histatin 1. In addition, we found that these protein–protein interactions protect complex partners from proteolysis and modulate their antifungal activity. Our data contribute significantly to characterization of the salivary interactome and to understanding the biology of salivary protein complexes.  相似文献   

10.
    
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

11.
    
ERC‐55, encoded from RCN2, is localized in the ER and belongs to the CREC protein family. ERC‐55 is involved in various diseases and abnormal cell behavior, however, the function is not well defined and it has controversially been reported to interact with a cytosolic protein, the vitamin D receptor. We have used a number of proteomic techniques to further our functional understanding of ERC‐55. By affinity purification, we observed interaction with a large variety of proteins, including those secreted and localized outside of the secretory pathway, in the cytosol and also in various organelles. We confirm the existence of several ERC‐55 splicing variants including ERC‐55‐C localized in the cytosol in association with the cytoskeleton. Localization was verified by immunoelectron microscopy and sub‐cellular fractionation. Interaction of lactoferrin, S100P, calcyclin (S100A6), peroxiredoxin‐6, kininogen and lysozyme with ERC‐55 was further studied in vitro by SPR experiments. Interaction of S100P requires [Ca2+] of ~10?7 M or greater, while calcyclin interaction requires [Ca2+] of >10?5 M. Interaction with peroxiredoxin‐6 is independent of Ca2+. Co‐localization of lactoferrin, S100P and calcyclin with ERC‐55 in the perinuclear area was analyzed by fluorescence confocal microscopy. The functional variety of the interacting proteins indicates a broad spectrum of ERC‐55 activities such as immunity, redox homeostasis, cell cycle regulation and coagulation.  相似文献   

12.
    
High‐throughput ‘‐omics’ data can be combined with large‐scale molecular interaction networks, for example, protein–protein interaction networks, to provide a unique framework for the investigation of human molecular biology. Interest in these integrative ‘‐omics’ methods is growing rapidly because of their potential to understand complexity and association with disease; such approaches have a focus on associations between phenotype and “network‐type.” The potential of this research is enticing, yet there remain a series of important considerations. Here, we discuss interaction data selection, data quality, the relative merits of using data from large high‐throughput studies versus a meta‐database of smaller literature‐curated studies, and possible issues of sociological or inspection bias in interaction data. Other work underway, especially international consortia to establish data formats, quality standards and address data redundancy, and the improvements these efforts are making to the field, is also evaluated. We present options for researchers intending to use large‐scale molecular interaction networks as a functional context for protein or gene expression data, including microRNAs, especially in the context of human disease.  相似文献   

13.
    
Permanent protein–protein interactions are commonly identified by co‐purification of two or more protein components using techniques like co‐immunoprecipitation, tandem affinity purification and native electrophoresis. Here we focus on blue‐native electrophoresis, clear‐native electrophoresis, high‐resolution clear‐native electrophoresis and associated techniques to identify stable membrane protein complexes and detergent‐labile physiological supercomplexes. Hints for dynamic protein–protein interactions can be obtained using two‐hybrid techniques but not from native electrophoresis and other protein isolation techniques except after covalent cross‐linking of interacting proteins in vivo prior to protein separation.  相似文献   

14.
Co-immunoprecipitation (co-IP) is a prominent technique for evaluating protein–protein interactions. Currently, large quantities of protein are required to perform co-IP followed by mass spectrometric or Western blot analyses of the interacting proteins. Here catenin–cadherin complexes were employed to establish a multiplexed microsphere-based co-immunoprecipitation (μco-IP) protocol that allows the analysis of different complexes of a given protein with various interacting proteins within a single experiment using a limited amount of sample material.  相似文献   

15.
    
The primary constituent of the amyloid plaque, β‐amyloid (Aβ), is thought to be the causal “toxic moiety” of Alzheimer's disease. However, despite much work focused on both Aβ and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein–protein interaction networks can provide insight into protein function, however, high‐throughput data often report false positives and are in frequent disagreement with low‐throughput experiments. Moreover, the complexity of the CNS is likely to be under represented in such databases. Therefore, we curated the published work characterizing both APP and Aβ to create a protein interaction network of APP and its proteolytic cleavage products, with annotation, where possible, to the level of APP binding domain and isoform. This is the first time that an interactome has been refined to domain level, essential for the interpretation of APP due to the presence of multiple isoforms and processed fragments. Gene ontology and network analysis were used to identify potentially novel functional relationships among interacting proteins.  相似文献   

16.
Hydrogen bond, hydrophobic and vdW interactions are the three major non-covalent interactions at protein–protein interfaces. We have developed a method that uses only these properties to describe interactions between proteins, which can qualitatively estimate the individual contribution of each interfacial residue to the binding and gives the results in a graphic display way. This method has been applied to analyze alanine mutation data at protein–protein interfaces. A dataset containing 13 protein–protein complexes with 250 alanine mutations of interfacial residues has been tested. For the 75 hot-spot residues (G1.5 kcal mol-1), 66 can be predicted correctly with a success rate of 88%. In order to test the tolerance of this method to conformational changes upon binding, we utilize a set of 26 complexes with one or both of their components available in the unbound form. The difference of key residues exported by the program is 11% between the results using complexed proteins and those from unbound ones. As this method gives the characteristics of the binding partner for a particular protein, in-depth studies on protein–protein recognition can be carried out. Furthermore, this method can be used to compare the difference between protein–protein interactions and look for correlated mutation. Figure Key interaction grids at the interface between barnase and barstar. Key interaction grid for barnase and barstar are presented in one figure according to their coordinates. In order to distinguish the two proteins, different icons were assigned. Crosses represent key grids for barstar and dots represent key grids for barnase. The four residues in ball and stick are Asp40 in barstar and Arg83, Arg87, His102 in barnase.  相似文献   

17.
PLD’s (Phospholipases D) are ubiquitously expressed proteins involved in many transphosphatidylation reactions. They have a bi-lobed structure composed by two similar domains which at their interface reconstitute the catalytic site through the association of the two conserved HxKx4Dx6GSxN motifs. PLD1 interacts with the small phosphoprotein PED-PEA15 by an unknown mechanism that, by enhancing PLD1 stability, apparently increases its enzymatic activity; the minimum interacting region of PLD1 was previously identified as spanning residues 712–1074 (D4 region). Since the D4/PED-PEA15 interaction has been claimed to be one of the multiple molecular events that can trigger type 2 diabetes, we purified the two recombinant proteins to study in vitro this binding by both ELISA and SPR techniques. Whilst PED-PEA15 was easily expressed and purified, expression of recombinant D4 was more problematic and only the fusion protein with Thioredoxin A and a six Histidine Tag (Trx-His6-D4) demonstrated sufficient stability for further characterization. We have found that Trx-His6-D4 is present as two different oligomeric forms, though only the monomeric variant is able to interact with PED-PEA15. All these findings may have important implications for both the mechanisms of phospholipase activity and PED-PEA15 regulative functions.  相似文献   

18.
    
The functional repertoire of genes in the eukaryotic organisms is enhanced by the phenomenon of alternative splicing. Hence, a node in a tissue specific protein–protein interaction (TS PPIN) network can be thought of as an ensemble of various spliced protein products of the corresponding gene expressed in that tissue. Here we demonstrate that the nodes that occupy topologically central positions characterized by high degree, betweenness, closeness, and eigenvector centrality values in TS PPINs of Homo sapiens are associated with high number of splice variants. We also show that the high “centrality” of these genes/nodes could in part be explained by the presence of a large number of promiscuous domains.  相似文献   

19.
20.
    
Flagellar motility is essential for the ability of Helicobacter pylori to colonize the gastric mucosa. Expression of the flagella is controlled by a complex regulatory cascade involving the two-component system FlgR-HP244, the sigma factors sigma54 and sigma28 and the anti-sigma28 factor FlgM. The protein-protein interaction map of H. pylori, which is based on a high-throughput two-hybrid screen (Rain et al., 2001. Nature 409, 211-215) indicated a protein-protein interaction between the gene product of ORF hp137 and both the histidine kinase HP244 and the flagellar hook protein HP908. We hypothesized that HP137 might be involved in a feedback regulatory mechanism controlling the activity of histidine kinase HP244. Here we demonstrate that HP137 does not participate in the regulation of flagellar gene expression, neither in H. pylori nor in the closely related bacterium Campylobacter jejuni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号