首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The D1/D2 domains of large subunit (LSU) rDNA have commonly been used for phylogenetic analyses of dinoflagellates; however, their properties have not been evaluated in relation to other D domains due to a deficiency of complete sequences. This study reports the complete LSU rRNA gene sequence in the causative unarmored dinoflagellate Cochlodinium polykrikoides, a member of the order Gymnodiniales, and evaluated the segmented domains and secondary structures when compared with its relatives. Putative LSU rRNA coding regions were recorded to be 3433 bp in length (49.0% GC content). A secondary structure predicted from the LSU and 5.8S rRNAs and parsimony analyses showed that most variation in the LSU rDNA was found in the 12 divergent (D) domains. In particular, the D2 domain was the most informative in terms of recent evolutional and taxonomic aspects, when compared with both the phylogenetic tree topologies and molecular distance (approximately 10 times higher) of the core LSU. Phylogenetic analysis was performed with a matrix of LSU DNA sequences selected from domains D2 to D4 and their flanking core sequences, which showed that C. polykrikoides was placed on the same branch with Akashiwo sanguinea in the “GPP” complex, which is referred to the gymnodinioid, peridinioid and prorocentroid groups. A broad phylogeny showed that armored and unarmored dinoflagellates were never clustered together; instead, they were clearly divided into two groups: the GPP complex and Gonyaulacales. The members of Gymnodiniales were always interspersed with peridinioid, prorocentroid and dinophysoid forms. This supports previous findings showing that the Gymnodiniales are polyphyletic. This study highlights the proper selection of LSU rDNA molecules for molecular phylogeny and signatures.  相似文献   

2.
We measured the growth rates and swimming behaviors of recently isolated strains of the dinoflagellate Akashiwo sanguinea to investigate to what degree growth and motility could contribute to the formation of in situ blooms. To quantify the effect of variation in in situ conditions on population growth rate, we applied two temperature treatments (10 °C and 20 °C) and measured growth in still conditions and on a shaker table, to emulate mild turbulence. To quantify the importance of intra-strain variability and trait variation in the species growth potential and vertical distribution, we included six strains isolated from a spatially and temporally extensive bloom on the US West Coast. Overall, as reported previously, A. sanguinea was observed to tolerate conditions amounting to a broad ecological niche with intra-specific variability further broadening tolerable conditions. In agreement with prior observations of slow growth rates of the species, average growth rates across all strains increased significantly from 0.12 d−1 (±0.03) at 10 °C to 0.28 d−1 (±0.13) at 20 °C in still conditions. Contrary to prior reports, mild turbulence had neutral or positive effects on most strains’ growth rates, with one strain only able to grow on the shaker table. Growth rates in mild turbulence were higher than in still conditions and increased from 0.15 d−1 (±0.01) at 10 °C to 0.43 d−1 (± 0.04) at 20 °C. There was significant intra-strain variation in growth rates (>50% coefficient of variation) and movement behaviors. All strains had both up and down swimming fractions, leading to predictions of vertically patchy distributions, rather than surface aggregations. Slow growth rates and dispersive swimming behaviors suggest in situ mortality must be low and tolerance of seasonally varying water temperatures lead to accumulation and persistence of cells over months and kilometers. Estimates of in situ loss rates are a critical but missing component of identifying the bloom formation mechanisms of this species.  相似文献   

3.
Database on the structure of large subunit ribosomal RNA.   总被引:7,自引:0,他引:7       下载免费PDF全文
The Antwerp database on large subunit ribosomal RNA now contains 607 complete or nearly complete aligned sequences. The alignment incorporates secondary structure information for each sequence. Other information about the sequences, such as literature references, accession numbers and taxonomic information is also available. Information from the database can be downloaded or searched on the rRNA WWW Server at URL http://rrna.uia.ac.be/  相似文献   

4.
Database on the structure of large ribosomal subunit RNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
The rRNA WWW Server at URL http://rrna.uia.ac.be/ now provides a database of 496 large subunit ribosomal RNA sequences. All these sequences are aligned, incorporate secondary structure information, and can be obtained in a number of formats. Other information about the sequences, such as literature references, accession numbers and taxonomic information is also available and searchable. If necessary, the data on the server can also be obtained by anonymous ftp.  相似文献   

5.
Database on the structure of large ribosomal subunit RNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
Our database on large ribosomal subunit RNA contained 334 sequences in July, 1995. All sequences in the database are aligned, taking into account secondary structure. The aligned sequences are provided, together with incorporated secondary structure information, in several computer-readable formats. These data can easily be obtained through the World Wide Web. The files in the database are also available via anonymous ftp.  相似文献   

6.
The latest release of the large ribosomal subunit RNA database contains 429 sequences. All these sequences are aligned, and incorporate secondary structure information. The rRNA WWW Server at URL http://rrna.uia.ac.be/ provides researchers with an easily accessible resource to obtain the data in this database in a number of computer-readable formats. A new query interface has been added to the server. If necessary, the data can also be obtained by anonymous ftp from the same site.  相似文献   

7.
Database on the structure of large ribosomal subunit RNA.   总被引:5,自引:0,他引:5       下载免费PDF全文
A database on large ribosomal subunit RNA is made available. It contains 258 sequences. It provides sequence, alignment and secondary structure information in computer-readable formats. Files can be obtained using ftp.  相似文献   

8.
Blooms of the harmful dinoflagellate Akashiwo sanguinea are responsible for the mass mortality of fish and invertebrates in coastal waters. This cosmopolitan species includes several genetically differentiated clades. Four clonal cultures were established by isolating single cells from Xiamen Harbour (the East China Sea) for morphological and genetic analyses. The cultures displayed identical morphology but were genetically different, thus revealing presence of cryptic diversity in the study area. New details of the apical structure complex of Akashiwo sanguinea were also found. To investigate whether the observed cryptic diversity was related to environmental differentiation, 634 cells were obtained from seasonal water samples collected from 2008 to 2012. These cells were sequenced by single-cell PCR. For comparison with Chinese material, additional large subunit ribosomal DNA sequences were obtained for three established strains from Malaysian and French waters. To examine potential ecological differentiation of the distinct genotypes, growth responses of the studied strains were tested under laboratory conditions at temperatures of 12 °C to 33 °C. These experiments showed four distinct ribotypes of A. sanguinea globally, with the ribotypes A and B co-occuring in Xiamen Harbour. Ribotype A of A. sanguinea was present year-round in Xiamen Harbour, but it only bloomed in the winter and spring, thus corresponding to the winter type. In contrast, A. sanguinea ribotype B bloomed only in the summer, corresponding to the summer type. This differentiation supports the temperature optimum conditions that were established for these two ribotypes in the laboratory. Ribotype A grew better at lower temperatures compared to ribotype B which preferred higher temperatures. These findings support the idea that various ribotypes of A. sanguinea correspond to distinct ecotypes and allopatric speciation occurred in different climatic regions followed by dispersal.  相似文献   

9.
The sequence of the Gyrodactylus salaris Malmberg, 1957, large subunit, or 28S, ribosomal RNA (rRNA) gene has been determined. This gene is the final portion of the Gyrodactylus rRNA gene operon to be sequenced and results in the first complete sequence of all rRNA genes and spacers from a monogenean. The nucleotide sequence was used to predict the secondary structure of the large subunit rRNA, and regions of conserved and variable sequence and structure were identified. The site where the 5' terminus of the 5.8S rRNA binds to a region within the large subunit rRNA was predicted and complements the anticipated interaction of the 3' terminus of the 5.8S with the 5' terminus of the large subunit rRNA. The large subunit gene may be useful in phylogenetic analysis of the Monogenea or Platyhelminthes and comparisons with other eukaryotes. The variable domains C and H may be most suitable for this purpose.  相似文献   

10.
The mitochondrial gene coding for the large ribosomal RNA (21S) has been isolated from a rho- clone of Saccharomyces cerevisiae. A DNA segment of about 5500 base pairs has been sequenced which included the totality of the sequence coding for the mature ribosomal RNA and the intron. The mature RNA sequence corresponds to a length of 3273 nucleotides. Despite the very low guanine-cytosine content (20.5%), many stretches of sequence are homologous to the corresponding Escherichia coli 23S ribosomal RNA. The sequence can be folded into a secondary structure according to the general models for prokaryotic and eukaryotic large ribosomal RNAs. Like the E.coli gene, the mitochondrial gene contains the sequences that look like the eukaryotic 5.8S and the chloroplastic 4.5S ribosomal RNAs. The 5' and 3' end regions show a complementarity over fourteen nucleotides.  相似文献   

11.
12.
A comparison of the small subunit rRNA sequences of a Chesapeake Bay strain of the dinoflagellate Akashiwo sanguinea and the dinoflagellate Amoebophrya sp. parasitizing it revealed several potential target sites that could be used to detect the parasite through in situ hybridization. The fluorescence of probed cells under various conditions of hybridization was measured by using a spot meter on a Nikon UFX-II camera attachment so that the effect of various hybridization parameters on probe binding could be determined. Probes directed against both the junction between helices 8 and 11 and helix 46 could detect the parasite, although the helix 8/11 probe produced a stronger signal under the conditions tested. The fluorescence of the probed cells increased with increasing hybridization time up to approximately twelve hours. The background fluorescence was lower at the wavelengths used to detect Texas Red than at those used to detect fluorescein, so probed cells were more distinct when Texas Red was used as the label. Cells stored in cold paraformaldehyde for a year still bound the probes. Young stages of the parasite could be seen more readily after in situ hybridization than after protargol impregnation.  相似文献   

13.
在用PCR技术扩增、克隆、测序了家蚕微粒子病原虫Nosema bombycis (镇江株)小亚基核糖体RNA基因核心序列(5'-端起1 200 bp)的基础上,用SSP-PCR技术克隆了核心序列3'-端下游序列,从而获得了家蚕微粒子病原虫小亚基核糖体RNA基因的全序列共1 233 bp。 用RnaViz 、Forcon、DCSE等生物软件构建了家蚕微粒子病原虫小亚基核糖体RNA的二级结构,与其它微孢子虫及真核生物小亚基核糖体RNA的二级结构相比,该二级结构缺乏螺旋10、E10-1、11、18、E23-n和43。  相似文献   

14.
The primary structure of the gene for 18 S rRNA of the crustacean Artemia salina was determined. The sequence has been aligned with 13 other small ribosomal subunit RNA sequences of eukaryotic, archaebacterial, eubacterial, chloroplastic and plant mitochondrial origin. Secondary structure models for these RNAs were derived on the basis of previously proposed models and additional comparative evidence found in the alignment. Although there is a general similarity in the secondary structure models for eukaryotes and prokaryotes, the evidence seems to indicate a different topology in a central area of the structures.  相似文献   

15.
The ribosomal RNA (rRNA) gene region of the microsporidium Heterosporis anguillarum has been examined. Complete DNA sequence data (4060 bp, GenBank Accession No. AF402839) of the rRNA gene of H. anguillarum are presented for the small subunit gene (SSU rRNA: 1359 bp), the internal transcribed spacer (ITS: 37 bp), and the large subunit gene (LSU rRNA: 2664 bp). The secondary structures of the H. anguillarum SSU and LSU rRNA genes are constructed and described. This is the first complete sequence of an rRNA gene published for a fish-infecting microsporidian species. In the phylogenetic analysis, the sequences, including partial SSU rRNA, ITS, and partial LSU rRNA sequences of the fish-infecting microsporidia, were aligned and analysed. The taxonomic position of H. anguillarum as suggested by Lom et al. (2000; Dis Aquat Org 43:225-231) is confirmed in this paper.  相似文献   

16.
《Gene》1997,184(2):221-227
The nucleotide (nt) sequence of a small subunit (18S) ribosomal RNA gene from the plerocercoid of Spirometra erinaceieuropaei (SEP) was determined. The gene with 2182 bp in length is larger than that of most eukaryotes. Extra nt sequences occur in regions known to be variable (V4 and V7). The predicted secondary structure of the nt positions 679–933 (V4) revealed different helices from that of other eukaryotes. The region between nt positions 1540 and 1749 (V7) was different from that of other eukaryotes, but the secondary structure prediction by computer analysis demonstrated that this part of 18S rRNA sequence from S. erinaceieuropaei may form a single extended helix. Nt that were aligned with those of nine other parasites were used to estimate phylogenetic relationships. The data presented here clearly indicate that S. erinaceieuropaei is closely related to Echinococcus granulosus.  相似文献   

17.
The dinoflagellate Akashiwo sanguinea is a well known, cosmopolitan harmful microalga that frequently forms harmful algal blooms (HABs) in marine estuaries from temperate to tropical waters, and has posed a severe threat to fish, shellfish, and sea birds. Therefore, it is important to understand the ecology of this species, particularly the mechanisms regulating its ubiquitous geographic distribution and frequent recurrence of. To date, the mechanisms regulating distribution and recurrence of HABs by this species have been poorly understood. While resting cyst production can play a central role in the geographic expansion and initiation of HABs, studies of the life cycle of this alga, including cyst production, have been lacking. Here, we demonstrate that A. sanguinea produces sexual resting cysts homothallically. We present evidence for cell pairs in sexual mating, biflagellated planozygote formation, and cysts of different morphologies, and we describe time series for germination of cysts to germlings with two longitudinal flagella, along with studies of possible factors affecting cyst production. Phylogenetic analysis of large sub‐unit rDNA sequences revealed a monophyly of this species and thus possibly a recent common ancestor for all global populations. The discovery of resting cyst production by A. sanguinea suggests its frequent recurrence of blooms and global distribution may have been facilitated by the natural and anthropogenic transport of resting cysts.  相似文献   

18.
The three-dimensional structure of the large (50S) ribosomal subunit from Escherichia coli has been determined from electron micrographs of negatively stained specimens. A new method of three-dimensional reconstruction was used which combines many images of individual subunits recorded at a single high tilt angle. A prominent feature of the reconstruction is a large groove on the side of the subunit that interacts with the small ribosomal subunit. This feature is probably of functional significance as it includes the regions where the peptidyl transferase site and the binding locations of the elongation factors have been mapped previously by immunoelectron microscopy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号