首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The Zygomycetes Phycomyces blakesleeanus and Blakeslea trispora are actual or potential sources of β-carotene, ergosterol, ubiquinone, edible oil, and other compounds. By feeding [14C]acetyl-CoA, L-[14C]leucine, or R-[14C]mevalonate in the presence of excess unlabeled glucose, we found that ubiquinone (the terpenoid moiety), β-carotene, and triacylglycerols were made from separate pools of all their common intermediates; the pools for ubiquinone and ergosterol were indistinguishable. Fatty acids were not labeled from mevalonate, showing the absence in these fungi of a shunt pathway that would recycle carbon from mevalonate and its products back to central metabolism. The overproduction of carotene in a Phycomyces mutant and in sexually mated cultures of Blakeslea modified the relative use of labeled and unlabeled carbon sources in the production of carotene, but not of the other compounds. We concluded that carotene, ubiquinone, and triacylglycerols are synthesized in separate subcellular compartments, while sterols and ubiquinone are synthesized in the same compartments or in compartments that exchange precursors. Carotene biosynthesis was regulated specifically and not by flow diversion in a branched pathway.  相似文献   

3.
The filamentous fungi Phycomyces blakesleeanus and Blakeslea trispora (Zygomycota, Mucorales) are actual or potential industrial sources of β-carotene and lycopene. These chemicals and the large terpenoid moiety of ubiquinone derive from geranylgeranyl pyrophosphate. We measured the ubiquinone and carotene contents of wild-type and genetically modified strains under various conditions. Light slightly increased the ubiquinone content of Blakeslea and had no effect on that of Phycomyces. Oxidative stress modified ubiquinone production in Phycomyces and carotene production in both fungi. Sexual interaction and mutations in both organisms made the carotene content vary from traces to 23 mg/g dry mass, while the ubiquinone content remained unchanged at 0.3 mg/g dry mass. We concluded that the biosyntheses of ubiquinone and carotene are not coregulated. The specific regulation for carotene biosynthesis does not affect even indirectly the production of ubiquinone, as would be expected if terpenoids were synthesized through a branched pathway that could divert precursor flows from one branch to another.  相似文献   

4.
5.
Blakeslea trispora produces carotenoids mixtures consisting mainly of lycopene, γ-carotene and β-carotene, together with trace amounts of other carotenoid precursors. The yield of these carotenoids and their composition are greatly affected by culture substrate. The scavenging capacity of carotenoids extract from cultures of B. trispora growing in various substrates was estimated using the 2,2-diphenyl-1-picrylhydrazyl method. Fractions enriched in β-carotene, γ-carotene and lycopene, obtained after column chromatography in alumina basic II, were also examined. Substrates containing starch and oils mixture, Ni2+, and that with pantothenic acid presented higher antioxidant activity. An increase in the antioxidant activity of the crude carotenoid extract compared to that of the isolated fractions enriched in β-carotene, γ-carotene and lycopene respectively, observed in most samples, indicated a possible synergistic effect. The results are of interest and by expanding this study to more substrates and other microorganisms- producing antioxidants, a formulation of extract with high free radical scavenging potential could be produced.  相似文献   

6.

Background  

Vitamin A and its derivatives, the retinoids, are essential for normal embryonic development and maintenance of cell differentiation. β, β-carotene 15,15'-monooxygenase 1 (BCMO1) catalyzes the central cleavage of β-carotene to all-trans retinal and is the key enzyme in the intestinal metabolism of carotenes to vitamin A. However, human and various rodent species show markedly different efficiencies in intestinal BCMO1-mediated carotene to retinoid conversion. The aim of this study is to identify potentially human-specific regulatory control mechanisms of BCMO1 gene expression.  相似文献   

7.
The mycelial morphology of Blakeslea trispora was of crucial importance in the production of β-carotene in submerged cultures of B. trispora. After the spores were inoculated, the time-course variation of mycelial morphology was closely examined under the microscope. With the addition of the non-ionic surfactant (Span 20: Sorbitan monolaurate, E493) to the culture medium, a unique pattern of mycelial elongation was observed: 1) slow formation of germ tubes from spores and 2) appearance of mycelia with very short length, which allowed a well-dispersed growth of B. trispora without significant pellet aggregation. Span 20 appears to act like a paramorphogen. Without Span 20, however, the fungal culture finally formed a big clump of mycelium owing to heavy cross-linking of long mycelia. But the short mycelium maintained in the course of cultivation seemed to be irrelevant to growth inhibition, because the final concentration of dry mycelium was much higher with Span 20 after 3-day cultivation. The 20-fold increase in specific yield of β-carotene (mg β-carotene produced per g mycelium) was achieved with this drastic change in the pattern of mycelial elongation. The reason for this result might be more effective mass transfer and/or enhanced sensitivity to environmental oxidative stress in the well-dispersed mycelial cultures of B. trispora.  相似文献   

8.
9.
Tereshina  V. M.  Memorskaya  A. S.  Feofilova  E. P. 《Microbiology》2003,72(4):448-454
Changes associated with zygospore formation in the mucorous fungus Blakeslea trispora were studied. Zygospores are dormant cells with thickened cell walls and large central lipid vacuoles containing large amounts of lycopene. We established for the first time that B. trispora gametangia of different sexes differ in their carotenoid content and revealed that zygote formation involves a novel structure that consists of densely intertwined hyphae. Using inhibitory analysis (blocking -carotene synthesis with diphenylamine and 2-amino-6-methylpyridine), we showed that suppression of carotene producion results in the inhibition of zygote formation. Hence, we established a manifest dependence of zygote formation on -carotene synthesis.  相似文献   

10.
The role of hydrolytic enzymes (proteases and chitinase) and oxidative stress in the autolysis and morphology of Blakeslea trispora during β-carotene production from a chemically defined medium in shake flask culture was investigated. The process of cellular autolysis was studied by measuring the changes in biomass dry weight, pH, concentration of β-carotene, specific activity of the hydrolytic enzymes and micromorphology of the fungus using a computerized image analysis system. In addition, the phenomenon of autolysis was associated with high concentrations of reactive oxygen species (ROS). The accumulation of ROS produced during fermentation causes oxidative stress in B. trispora. Oxidative stress was examined in terms of the activities of two key defensive enzymes: catalase (CAT) and superoxide dismutase (SOD). The profile of the specific activities of the above enzymes appeared to correlate with the oxidative stress of the fungus. The high activities of CAT and SOD showed that B. trispora is found under oxidative stress during β-carotene production. The culture began to show signs of autolysis nearly in the growth phase and autolysis increased significantly during the production phase. The morphological differentiation of the fungus was a result of the degradation of the cell membrane by hydrolytic enzymes and oxidative stress. Increased β-carotene production is correlated with intense autolysis of clumps, which has as a consequence the increase of the freely dispersed mycelia.  相似文献   

11.
In this study, the synergistic effect of overexpressing the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene and adding ergosterol synthesis inhibitor, ketoconazole, on β-carotene production in the recombinant Saccharomyces cerevisiae was investigated. The results showed that the over-expression of HMG-CoA reductase gene and adding 100 mg/l ketoconazole alone can result in 135.1 and 15.6% increment of β-carotene concentration compared with that of the control (2.05 mg/g dry weight of cells), respectively. However, the combination of overexpressing HMG-CoA reductase gene and adding ketoconazole can achieve a 206.8% increment of pigment content (6.29 mg/g dry weight of cells) compared with that of the control. Due to the fact that over-expression of the HMG-CoA reductase gene can simultaneously improve the flux of the sterol and carotenoid biosynthetic pathway, it can be concluded that under the circumstances of blocking sterol biosynthesis, increasing the activity of HMG-CoA reductase can result in more precursors FPP fluxing into carotenoid branch and obtain a high increment of β-carotene production. The results of this study collectively suggest that the combination of overexpressing HMG-CoA reductase gene and supplying ergosterol synthesis inhibitor is an effective strategy to improve the production of desirable isoprenoid compounds such as carotenoids.  相似文献   

12.
In aerobic metabolism, reactive oxygen species (ROS) are formed during the fermentation that can cause oxidative stress in microorganisms. Microbial cells possess both enzymatic and non-enzymatic defensive systems that may protect cells from oxidative damage. The antioxidant enzymes superoxide dismutase and catalase are the two key defensive enzymes to oxidative stress. The factors that induce oxidative stress in microorganisms include butylated hydroxytoluene (BHT), hydrogen peroxide, metal ions, dissolved oxygen tension, elevated temperature, menadione, junglone, paraquat, liquid paraffin, introduction to bioreactors of shake flask inocula and synthetic medium sterilized at initial pH 11.0. Carotenes are highly unsaturated isoprene derivatives. They are used as antioxidants and as coloring agents for food products. In fungi, carotenes are derived via the mevalonate biosynthesis pathway. The key genes in carotene biosynthesis are hmgR, ipi, isoA, carG, carRA and carB. Among microorganisms, Βlakeslea trispora is the main microorganism used for the production of carotenes on the industrial scale. Currently, the synthetic medium is considered the superior substrate for the production of carotenes in a pilot plant scale. The fermentation systems used for the production of carotenes include shake flasks, stirred tank fermentor, bubble column reactor and flat panel photobioreactor. This review summarizes the oxidative stresses in microorganisms and it is focused on the current status of carotene production by B. trispora including oxidative stress induced by BHT, enhanced dissolved oxygen levels, iron ions, liquid paraffin and synthetic medium sterilized at an initial pH 11.0. The oxidative stress induced by the above factors increases significantly the production of carotenes. However, to further reduce the cost of carotene production, new biotechnological methods with higher productivity still need to be explored.  相似文献   

13.
The fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces metabolites of biotechnological interest, such as gibberellins, bikaverins, and carotenoids. Gibberellin and bikaverin productions are induced upon nitrogen exhaustion, while carotenoid accumulation is stimulated by light. We evaluated the effect of nitrogen availability on carotenogenesis in comparison with bikaverin and gibberellin production in the wild type and in carotenoid-overproducing mutants (carS). Nitrogen starvation increased carotenoid accumulation in all strains tested. In carS strains, gibberellin and bikaverin biosynthesis patterns differed from those of the wild type and paralleled the expression of key genes for both pathways, coding for geranylgeranyl pyrophosphate (GGPP) and kaurene synthases for the former and a polyketide synthase for the latter. These results suggest regulatory connections between carotenoid biosynthesis and nitrogen-controlled biosynthetic pathways in this fungus. Expression of gene ggs1, which encodes a second GGPP synthase, was also derepressed in the carS mutants, suggesting the participation of Ggs1 in carotenoid biosynthesis. The carS mutations did not affect genes for earlier steps of the terpenoid pathway, such as fppS or hmgR. Light induced carotenoid biosynthesis in the wild type and carRA and carB levels in the wild-type and carS strains irrespective of nitrogen availability.  相似文献   

14.
To establish a model system for alteration of flower color by carotenoid pigments, we modified the carotenoid biosynthesis pathway of Lotus japonicus using overexpression of the crtW gene isolated from marine bacteria Agrobacterium aurantiacum and encoding β-carotene ketolase (4,4′-β-oxygenase) for the production of pink to red color ketocarotenoids. The crtW gene with the transit peptide sequence of the pea Rubisco small subunit under the regulation of the CaMV35S promoter was introduced to L. japonicus. In most of the resulting transgenic plants, the color of flower petals changed from original light yellow to deep yellow or orange while otherwise exhibiting normal phenotype. HPLC and TLC analyses revealed that leaves and flower petals of these plants accumulated novel carotenoids, believed to be ketocarotenoids consisting of including astaxanthin, adonixanthin, canthaxanthin and echinenone. Results indicated that modification of the carotenoid biosynthesis pathway is a means of altering flower color in ornamental crops.  相似文献   

15.
16.
Ji J  Wang G  Wang J  Wang P 《Biotechnology letters》2009,31(2):305-312
Carotenoids are red, yellow and orange pigments, which are widely distributed in nature and are especially abundant in yellow-orange fruits and vegetables and dark green leafy vegetables. Carotenoids are essential for photosynthesis and photoprotection in plant life and also have different beneficial effects in humans and animals (van den Berg et al. 2000). For example, β-carotene plays an essential role as the main dietary source of vitamin A. To obtain further insight into β-carotene biosynthesis in two important economic plant species, Lycium barbarum and Gentiana lutea L., and to investigate and prioritize potential genetic engineering targets in the pathway, the effects of five carotenogenic genes from these two species, encoding proteins including geranylgeranyl diphosphate synthase, phytoene synthase and δ-carotene desaturase gene, lycopene β-cyclase, lycopene ε-cyclase were functionally analyzed in transgenic tobacco (Nicotiana tabacum) plants. All transgenic tobacco plants constitutively expressing these genes showed enhanced β-carotene contents in their leaves and flowers to different extents. The addictive effects of co-ordinate expression of double transgenes have also been investigated.  相似文献   

17.
The recombinant β-carotene 15,15′-monooxygenase from chicken liver was purified as a single 60 kDa band by His-Trap HP and Resource Q chromatography. It had a molecular mass of 240 kDa by gel filtration indicating the native form to be tetramer. The enzyme converted β-carotene under maximal conditions (pH 8.0 and 37°C) with a k cat of 1.65 min−1 and a K m of 26 μM and its conversion yield of β-carotene to retinal was 120% (mol mol−1). The enzyme displayed catalytic efficiency and conversion yield for β-carotene, β-cryptoxanthin, β-apo-8′-carotenal, β-apo-4′-carotenal, α-carotene and γ-carotene in decreasing order but not for zeaxanthin, lutein, β-apo-12′-carotenal and lycopene, suggesting that the presence of one unsubstituted β-ionone ring in a substrate with a molecular weight greater than C30 seems to be essential for enzyme activity.  相似文献   

18.
Fungi produce and accumulate various carotenoids. Mycelia of the ZygomyceteBlakeslea trispora contained β-carotene and its precursors γ-carotene and lycopene. When strains of opposite sex grew together, the β-carotene concentration increased fourfold, that of γ-carotene remained unchanged, and other intermediates practically disappeared. The inhibitors nicotine, 2-(4-chlorophenylthio)-triethylamine, α-picoline, and imidazole increased the concentrations of lycopene and γ-carotene and decreased those of β-carotene. From our quantitative results, we conclude thatBlakeslea has two pathways for lycopene metabolism, of which other fungi have only one or the other. The main one, two cyclizations from lycopene to β-carotene, is carried out by an enzyme dimer, is stimulated by sexual interaction, and is sensitive to the inhibitors. The other pathway, a cyclization to γ-carotene is not affected by mating or the inhibitors.  相似文献   

19.
Plempel  Manfred 《Planta》1965,65(3):225-231
Zusammenfassung Gamonbildung und Carotinsynthese sind bei den Zygomyceten Mucor mucedo, Blakeslea trispora und Phycomyces Blakesleeanus gekoppelte Reaktionen. Die Gamonbildung verläuft parallel zur Carotinbiosynthese. Damit kann ein Weg zur Klärung der Gamonsynthese gefunden werden.
Sexual reaction and carotene synthesis in Zygomycetes
Summary In the Zygomycetes Mucor mucedo, Blakeslea trispora and Phycomyces Blakesleeanus, gamon formation and carotene synthesis are coupled reactions. The gamon formation goes parallel with the carotene biosynthesis. This provides a way by which gamon synthesis can be elucidated.
  相似文献   

20.
Quantitative analysis of carotene accumulation in white, pink, pumpkin, orange, and yellow haploid strains ofUstilago violacea by high-performance liquid chromatography indicated that specific patterns of carotene accumulation are primarily responsible for the white, pumpkin, orange, and yellow phenotypes. The yellow strains accumulated primarily -zeacarotene and -carotene. The white strains accumulated primarily the colorless carotene, phytoene, or did not accumulate any carotene at all. Carotene accumulation in pink haploid strains followed the same patterns as for the white, pumpkin, orange, or yellow strains. Pink diploid and disomic strains ofU. violacea with various parental combinations of the color mutations accumulated either cis--zeacarotene and -carotene or only -carotene. The pattern of carotene accumulation in conjunction with the available genetic information for the carotene loci inU. violacea was used as a basis for the construction of a new genetic model for carotene biosynthesis inU. violacea. The model employs three dehydrogenases and one cyclase for the synthesis of -carotene from phytoene, and accounts for the carotene accumulation patterns of either cis--zeacarotene and -carotene or lycopene, -carotene, and -carotene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号