首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rhoptries are the unifying structural feature of the intracellular, opicomplexon parasites and are implicated in having a central role in host cell invasion. Ultrastructural studies of zoites of different genera suggest that the participation of rhoptries in the invasion of the respective host cells is morphologically similar. However, biochemical analysis of their protein constituents reveals a considerable degree of diversity between different coccidion parasites. In this article Margaret Perkins asks whether there are common structural determinants of the rhoptry components of different genera and if the underlying mechanism of rhoptry function is similar in all opicomplexon parasites.  相似文献   

4.
Protein phosphorylation plays a fundamental role in the biology of apicomplexan parasites. Many apicomplexan protein kinases are substantially different from their mammalian orthologues, and thus constitute a landscape of potential drug targets. Here, we integrate genomic, biochemical, genetic and evolutionary information to provide an integrated and up-to-date analysis of twelve apicomplexan kinomes. All kinome sequences are available through the Kinomer database.  相似文献   

5.
Cytoskeleton of apicomplexan parasites.   总被引:7,自引:0,他引:7  
The Apicomplexa are a phylum of diverse obligate intracellular parasites including Plasmodium spp., the cause of malaria; Toxoplasma gondii and Cryptosporidium parvum, opportunistic pathogens of immunocompromised individuals; and Eimeria spp. and Theileria spp., parasites of considerable agricultural importance. These protozoan parasites share distinctive morphological features, cytoskeletal organization, and modes of replication, motility, and invasion. This review summarizes our current understanding of the cytoskeletal elements, the properties of cytoskeletal proteins, and the role of the cytoskeleton in polarity, motility, invasion, and replication. We discuss the unusual properties of actin and myosin in the Apicomplexa, the highly stereotyped microtubule populations in apicomplexans, and a network of recently discovered novel intermediate filament-like elements in these parasites.  相似文献   

6.
Phosphoinositides are the phosphorylated derivatives of the structural membrane phospholipid phosphatidylinositol. Single or combined phosphorylation at the 3, 4 and 5 positions of the inositol ring gives rise to the seven different species of phosphoinositides. All are quantitatively minor components of cellular membranes but have been shown to have important functions in multiple cellular processes. Here we describe our current knowledge of phosphoinositide metabolism and functions in apicomplexan parasites, mainly focusing on Toxoplasma gondii and Plasmodium spp. Even though our understanding is still rudimentary, phosphoinositides have already shown their importance in parasite biology and revealed some very particular and parasite-specific functions. Not surprisingly, there is a strong potential for phosphoinositide synthesis to be exploited for future anti-parasitic drug development.  相似文献   

7.
Members of the phylum Apicomplexa are important protozoan parasites that cause some of the most serious, and in some cases, deadly diseases in humans and animals. They include species from the genus Plasmodium, Toxoplasma, Eimeria, Neospora, Cryptosporidium, Babesia and Theileria. The medical, veterinary and economic impact of these pathogens on a global scale is enormous. Although chemo- and immuno-prophylactic strategies are available to control some of these parasites, they are inadequate. Currently, there is an urgent need to design new vaccines or chemotherapeutics for apicomplexan diseases. High-throughput global protein expression analyses using gel or non-gel based protein separation technologies coupled with mass spectrometry and bioinformatics provide a means to identify new drug and vaccine targets in these pathogens. Protein identification based proteomic projects in apicomplexan parasites is currently underway, with the most significant progress made in the malaria parasite, Plasmodium falciparum. More recently, preliminary two-dimensional gel electrophoresis maps of Toxoplasma gondii and Neospora caninum tachyzoites and Eimeria tenella sporozoites, have been produced, as well as for micronemes in E. tenella. In this review, the status of proteomics in the analysis of global protein expression in apicomplexan parasites will be compared and the challenges associated with these investigations discussed.  相似文献   

8.
9.
F. E. G. COX 《Mammal Review》1987,17(2-3):59-66
Thirty-five species of protozoan parasites belonging to thirteen genera have now been recorded for British small rodents. These include species of Entamoeba, Giardia, Spironucleus, Trichomonas, Chilomastix, Eimeria and Cryptosporidium in the gut; Trypanosoma, Hepatozoon and Babesia in the blood; and Toxoplasma, Frenkelia and Sarcocystis in the tissues. Recent advances have progressed along two lines, the elucidation of the life-cycles of the species of Frenkelia and Sarcocystis , which are now known to involve a carnivore as the final host, and laboratory studies on those parasites that can be maintained in laboratory animals. It is now possible to draw up a definitive list of hosts and parasites and this should serve as a basis for studies on the epidemiology of these parasites and their possible effects on their hosts.  相似文献   

10.
11.
12.
The intracellular forms of the apicomplexan parasites Plasmodium, Toxoplasma and Eimeria reside within a parasitophorous vacuole. The nutrients required by these intracellular parasites to support their high rate of growth and replication originate from the host cell which, in turn, takes up such compounds from the extracellular milieu. Solutes moving from the external medium to the interior of the parasite, are confronted by a series of three membranes --the host cell membrane, the parasitophorous vacuole membrane and the parasite plasma membrane. Each constitutes a potential permeability barrier which must be either crossed or bypassed. It is the mechanisms by which this occurs that are the subject of this review.  相似文献   

13.
A series of articles by W.J. Freeland published in the 1970s proposed that social organization and behavioral processes were heavily influenced by parasitic infections, which led to a number of intriguing hypotheses concerning how natural selection might act on social factors because of the benefits of avoiding parasite infections. For example, Freeland [1979] showed that all individuals within a given group harbored identical gastrointestinal protozoan faunas, which led him to postulate that social groups were akin to "biological islands" and suggest how this isolation could select specific types of ranging and dispersal patterns. Here, we reexamine the biological island hypothesis by quantifying the protozoan faunas of the same primate species examined by Freeland in the same location; our results do not support this hypothesis. In contrast, we quantified two general changes in protozoan parasite community of primates in the study area of Kibale National Park, Uganda, over the nearly 35 years between sample collections: (1) the colobines found free of parasites in the early 1970s are now infected with numerous intestinal protozoan parasites and (2) groups are no longer biological islands in terms of their protozoan parasites. Whatever the ultimate explanation for these changes, our findings have implications for studies proposing selective forces shaping primate behavior and social organization.  相似文献   

14.
In what appears to be an essential prelude to establish a successful infection in the mammalian host, Plasmodium sporozoites move rapidly through several host cells breaching the cell plasma membranes in the process. This mode of invasion precedes the 'traditional' mode in which the sporozoite enters by invagination of the host cell membrane and develops within a parasitophorous vacuole. Here we revisit the existing literature that supports the presence of similar invasive behaviors in other apicomplexan parasites.  相似文献   

15.
16.
Apicomplexan parasites possess a highly specialized secretory apparatus. The timed secretion of proteins from three different organelles--micronemes, rhoptries and dense granules--serves to establish and maintain a parasitophorous vacuole inside the host cell in which the parasites can divide. Recent efforts have identified components that sort apicomplexan proteins to these unusual secretory organelles and have shown that this machinery is evolutionarily conserved across species. Concise amino acid sequences (e.g. tyrosine-based motifs) within the targeted protein determine their destination in Apicomplexa in a way similar to mammalian cells. Additionally, the parasite exploits new or unusual mechanisms of protein targeting (e.g. post-secretory membrane insertion).  相似文献   

17.
18.
Protozoan and helminth parasites of humans in mainland China   总被引:1,自引:0,他引:1  
To date, 30 species of protozoa, 12 species of cestodes, 26 species of trematodes, 23 species of nematodes, two species of gordius and one acanthocephalan species hae been reported as parasites of man in mainland China.  相似文献   

19.
Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号