首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High levels of pro-angiogenic factors, leptin, IL-1, Notch and VEGF (ligands and receptors), are found in breast cancer, which is commonly correlated with metastasis and lower survival of patients. We have previously reported that leptin induces the growth of breast cancer and the expression of VEGF/VEGFR-2 and IL-1 system. We hypothesized that Notch, IL-1 and leptin crosstalk outcome (NILCO) plays an essential role in the regulation of leptin-mediated induction of proliferation/migration and expression of pro-angiogenic molecules in breast cancer. To test this hypothesis, leptin's effects on the expression and activation of Notch signaling pathway and VEGF/VEGFR-2/IL-1 were determined in mouse (4T1, EMT6 and MMT) breast cancer cells. Remarkably, leptin up-regulated Notch1-4/JAG1/Dll-4, Notch target genes: Hey2 and survivin, together with IL-1 and VEGF/VEGFR-2. RNA knockdown and pharmacological inhibitors of leptin signaling significantly abrogated activity of reporter gene-luciferase CSL (RBP-Jk) promoter, showing that it was linked to leptin-activated JAK2/STAT3, MAPK, PI-3K/mTOR, p38 and JNK signaling pathways. Interestingly, leptin upregulatory effects on cell proliferation/migration and pro-angiogenic factors Notch, IL-1 and VEGF/VEGFR-2 were abrogated by a γ-secretase inhibitor, DAPT, as well as siRNA against CSL. In addition, blockade of IL-1R tI inhibited leptin-induced Notch, Hey2 and survivin as well as VEGF/VEGFR-2 expression. These data suggest leptin is an inducer of Notch (expression/activation) and IL-1 signaling modulates leptin effects on Notch and VEGF/VEGFR-2. We show for the first time that a novel unveiled crosstalk between Notch, IL-1 and leptin (NILCO) occurs in breast cancer. Leptin induction of proliferation/migration and upregulation of VEGF/VEGFR-2 in breast cancer cells were related to an intact Notch signaling axis. NILCO could represent the integration of developmental, pro-inflammatory and pro-angiogenic signals critical for leptin-induced cell proliferation/migration and regulation of VEGF/VEGFR-2 in breast cancer. Targeting NILCO might help to design new pharmacological strategies aimed at controlling breast cancer growth and angiogenesis.  相似文献   

2.
Anti-angiogenic agents regulate tumor growth by inhibiting endothelial cell proliferation and invasion. Carboxyamido-triazole (CAI), an inhibitor of non-voltage-operated calcium entry and calcium influx-mediated pathways, has angiogenesis and invasion inhibitory activity. We hypothesized that CAI may express its anti-angiogenic effects through negative regulation of pro-angiogenic cytokine production and/or function. In vivo, orally administered CAI prevented A2058 human melanoma xenograft growth and concomitantly resulted in a marked reduction in circulating vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). In vitro, A2058 cell secretion of VEGF was inhibited by CAI treatment under limiting micronutrient conditions that approximate the tumor microenvironment, media restriction, and acidification to pH 6.8 (P=0.0003 and P=0.0006, respectively). VEGF and HIF-1alpha message and protein were also reduced by CAI treatment. Oral CAI treatment reduced vascular ingrowth in vivo into VEGF-containing Matrigel plugs. Commensurate with those findings, human umbilical vein endothelial cell (HUVEC) migration towards VEGF was reduced below background by exposure to CAI in the migration chamber (P<0.0001). An 88% reduction in circulating IL-8 concentration was measured in CAI-treated animals. However, IL-8 protein secretion and gene expression were increased by CAI treatment in culture (P< or =0.01), where CAI caused a dose-dependent acidification of the culture milieu (P< or =0.005). This paradox suggests that IL-8 production in vitro may be more sensitive to ambient pH than cytosolic calcium. These observations suggest that CAI inhibition of tumor cell VEGF production and endothelial cell response to VEGF results in disruption of signaling between the tumor and its microenvironment, causing a net anti-angiogenic effect.  相似文献   

3.
Altered angiogenesis response is observed in patients with cervical cancer. In this study we examined whether Human Papilloma Virus (HPV) positive epithelial cells are able to produce angiogenic modulators. When added to human umbilical vein endothelial cells (HUVEC) the media conditioned by HPV-16 positive cells was able to induce proliferation, whereas a contrary effect was observed for media derived from non-tumorigenic keratinocytes. The analyses of angiogenesis modulator's mRNA levels result in a decrease of the antiangiogenic factors TSP-1 and 2 in HPV-16 positive cells. In contrast the expression of the pro-angiogenic molecules: bFGF, IL-8, TGF-beta, TNFalpha, and VEGF were higher in these cells as compared to control keratinocytes. Furthermore the pattern of VEGF isoforms observed in the cells positive for the viral genome point to a preferential induction of the VEGF(189) isoform. We therefore conclude that cervical cancer cells expressing HPV-16 genome are able to contribute to the pro-angiogenic response that might support tumor growth and invasion of the surrounding tissues.  相似文献   

4.
Former vascular endothelial growth factor (VEGF)-head and neck squamous cell carcinoma (HNSCC) studies have focused on VEGF's contributions toward tumor-associated angiogenesis. Previously, we have shown that HNSCC cells produce high levels of VEGF. We therefore hypothesized that VEGF serves a biphasic role, that is, pro-angiogenic and pro-tumorigenic in HNSCC pathogenesis. Western blots confirmed the presence of VEGF's primary mitogenic receptors, VEGFR-2/KDR and VEGFR-1/Flt-1 in cultured HNSCC cells. Subsequent studies evaluated VEGF's effects on HNSCC intracellular signaling, mitogenesis, invasive capacities, and matrix metalloproteinases (MMPs) activities. Introduction of hrVEGF(165) initiated ROS-mediated intracellular signaling, resulting in kinase activation and phosphorylation of KDR and Erk1/2. As high endogenous VEGF production rendered HNSCC cells refractory to exogenous VEGF's mitogenic effects, siRNA was employed, inhibiting endogenous VEGF production for up to 96 h. Relative to transfection vector matched controls, siRNA treated HNSCC cells showed a significant decrease in proliferation at both 30 and 50 nM siRNA doses. Addition of exogenous hrVEGF(165) (30 and 50 ng/ml) to siRNA-silenced HNSCC cells resulted in dose-dependent increases in cell proliferation. Cell invasion assays showed VEGF is a potent HNSCC chemoattractant and demonstrated that VEGF pre-treatment enhanced invasiveness of HNSCC cells. Conditioned media from VEGF challenged HNSCC cells showed a moderate increase in gelatinase activity. Our results demonstrate, for the first time, that HNSCC cells are both targets and effectors for VEGF. These data introduce the prospect that VEGF targeted therapy has the potential to fulfill both anti-angiogenic and anti-tumorigenic functions.  相似文献   

5.
Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.  相似文献   

6.
Expression of Bcl-x(L) correlates with the clinical outcomes of patients with cancer. While the role of Bcl-2 in angiogenesis is becoming increasingly evident, the function of Bcl-x(L) in angiogenesis is unclear. Here, we showed that epidermal growth factor (EGF) induces in vitro capillary sprouting and Bcl-x(L) expression in primary endothelial cells. Bcl-x(L)-transduced human dermal microvascular endothelial cells (HDMEC-Bcl-x(L)), but not empty vector control cells, spontaneously organize into capillary-like sprouts. Searching for a mechanism to explain these responses, we observed that Bcl-x(L) induced expression of the pro-angiogenic chemokines CXC ligand-1 (CXCL1) and CXC ligand-8 (CXCL8), and that blockade of CXC receptor-2 (CXCR2) signaling inhibited spontaneous sprouting of HDMEC-Bcl-x(L). Bcl-x(L) led to Bcl-2 upregulation, but Bcl-2 did not upregulate Bcl-x(L), suggesting the existence of a unidirectional crosstalk from Bcl-x(L) to Bcl-2. EGF and Bcl-x(L) activate the mitogen-activated protein kinase/ERK pathway resulting in upregulation of vascular endothelial growth factor (VEGF), a known inducer of Bcl-2 in endothelial cells. Inhibition of VEGF receptor signaling in HDMEC-Bcl-x(L) prevented Bcl-2 upregulation and demonstrated the function of a VEGF-mediated autocrine loop. Bcl-2 downregulation by RNAi blocked CXCL1 and CXCL8 expression downstream of Bcl-x(L), and markedly decreased angiogenesis in vivo. We conclude that Bcl-x(L) functions as a pro-angiogenic signaling molecule controlling Bcl-2 and VEGF expression. These results emphasize a complex interplay between Bcl-2 family members beyond their classical roles in apoptosis.  相似文献   

7.
This study addresses establishment of an "in vitro" melanoma angiogenesis model using multicellular tumor spheroids (MCTS) of differentiated (HBL) or undifferentiated (NA8) melanoma cell lines. DNA microarray assay and qRT-PCR indicated upregulation of pro-angiogenic factors IL-8, VEGF, Ephrin A1 and ANGPTL4 in NA8-MCTSs (vs. monolayers) whereas these were absent in MCTS and monolayer cultures of HBL. Upon co-culture with endothelial cell line HMEC-1 NA8-MCTS attract, whereas HBL-MCTS repulse, HMEC-1. Overexpression of T-cadherin in HMEC-1 leads to their increased invasion and network formation within NA8-MCTS. Given an appropriate angiogenic tumor microenvironment, T-cadherin upregulation on endothelial cells may potentiate intratumoral angiogenesis.  相似文献   

8.
Cervical cancer (CC) is a common gynecological cancer and a leading cause of cancer-related deaths in women globally. Therefore, this study explores the action of microRNA-205 (miR-205) in the invasion, migration, and angiogenesis of CC through binding to tumor suppressor lung cancer 1 (TSLC1). Initially, the microarray analysis was used to select the candidate gene and the regulatory microRNA. Then, the target relationship between miR-205 and TSLC1 as well as the expression of miR-205, TSLC1, and p-Akt/total Akt in CC cells were determined. Afterwards, CC cell invasion and migration were detected after the treatment of miR-205 mimics/inhibitors and short hairpin RNA against TSLC1. After coculture of cancer cells and vascular endothelial cells, cell proliferation, tube formation, and microvessel density (MVD) were detected to determine the roles of miR-205 in angiogenesis. Finally, tumor growth in nude mice was measured in vivo. TSLC1 was determined as the candidate gene, which was found to be targeted and negatively regulated by miR-205. Then, downregulated miR-205 or forced TSLC1 expression inhibited invasion, migration, and angiogenesis in CC, corresponding to suppressed cell proliferation, tube formation, and expression of IL-8, VEGF, and bFGF, as well as the inhibited activation of the Akt signaling pathway. Furthermore, downregulation of miR-205 was found to exert an inhibitory role in tumor formation and MVD by elevating TSLC1 in CC in vivo. This study demonstrated that downregulated miR-205 inhibited cell invasion, migration, and angiogenesis in CC by inactivating the Akt signaling pathway via TSLC1 upregulation.  相似文献   

9.
Several oncogenes and growth factors are found to be mutated and overexpressed in adenocarcinoma of the pancreas, and may correlate with its highly aggressive nature. Insulin-like growth factor (IGF-I) and its receptor (IGF-IR) are highly expressed in this tumor type. We examined the IGF-IR-mediated signaling pathways in relation to cell proliferation, invasiveness, and expression pattern of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) in the pancreatic cancer line ASPC-1. Our findings show that IGF-IR is an important growth factor receptor for cell proliferation and invasion, and VPF/VEGF expression in ASPC-1. Further experiments indicate that IGF-IR mediates different signaling pathways to execute its functions. Activation of Ras by IGF-IR was found to be required for the cell invasion. On the other hand Src activation through IGF-IR is required for the cell proliferation, invasion, and also VPF/VEGF expression. Taken together, our data indicate the importance of IGF-IR in growth and invasiveness of the pancreatic cancer cell lines and also point out the multiple signaling pathways channeled through this receptor.  相似文献   

10.
Xu W  Huang JJ  Cheung PC 《PloS one》2012,7(3):e34406
Liver cancer or hepatocellular carcinoma is one of the leading causes of cancer-related deaths. Conventional chemotherapies are limited by the development of drug resistance and various side effects. Because of its non-toxicity and potent biopharmacological activity, metabolites derived from mushrooms have received more attention in cancer therapy. Our previous studies have demonstrated the anticancer effects of polysaccharide-protein complexes derived from the Pleurotus mushrooms. The aim of this study was to investigate the underlying molecular mechanism of the anticancer activity of a hot water extract containing a polysaccharide-protein complex isolated from Pleurotus pulmonarius (PP) in liver cancer cells. Our results indicated that exposure of liver cancer cells to PP not only significantly reduced the in vitro cancer cell proliferation and invasion but also enhanced the drug-sensitivity to the chemotherapeutic drug Cisplatin. Both oral administration and intraperitoneal injection of PP significantly inhibited the tumor growth in xenograft BALB/c nude mice. PP triggered a marked suppression of the PI3K/AKT signaling pathway in liver cancer cells in vitro and in vivo, and overexpression of the constitutively active form of AKT, Myr-AKT, abrogated this effect and the inhibited proliferation and invasion by PP. Both western blot and ELISA results showed that PP-treated liver cancer cells had reduced expression and secretion of vascular endothelial growth factor (VEGF). Addition of recombinant human VEGF attenuated the inhibitory effects of PP on PI3K/AKT pathway and the cancer phenotypes. Our results demonstrated that PP suppressed the proliferation, invasion, and drug-resistance of liver cancer cells in vitro and in vivo, mediated by the inhibition of autocrine VEGF-induced PI3K/AKT signaling pathway. This study suggests the potential therapeutic implication of PP in the treatment of human liver cancer.  相似文献   

11.
Invasion and metastasis of cancer cells is a complex process requiring the activity of proteins that promote extracellular matrix degradation, motility of cancer cells, and angiogenesis. Although exclusively the cancer cells make several of these proteins, few key proteins are derived from stromal cells in response to cancer cell-stromal cell interaction. In this report, we show that the breast cancer cell-derived interleukin-1alpha (IL-1alpha) plays an important role in expression of pro-metastatic genes in cancer as well as in stromal cells. Neutralizing antibody against IL-1alpha inhibited IL-6, and IL-8 expression in IL-1alpha-expressing cancer cells. In addition, this antibody also prevented induction of IL-6, IL-8, and matrix metalloproteinase 3 (MMP3) but not vascular endothelial growth factor (VEGF) in fibroblasts by conditioned medium (CM) from IL-1alpha-expressing breast cancer cells. These results suggest that inhibition of IL-1alpha activity by either neutralizing antibody against IL-1alpha or chemical inhibitor of IL-1alpha processing may prevent invasion and metastasis of breast cancer.  相似文献   

12.
Esophageal squamous cell carcinoma (ESCC) has a low 5-year patient survival rate. Radiotherapy, as a preoperative or postoperative treatment of surgery, has a crucial role in improving local control and survival of ESCC. Various chemotherapeutic and biologic agents have been used as radio-sensitizers in combination with radiotherapy. Here, we demonstrate that zoledronic acid (ZOL) has a radio-sensitizing effect on ESCC cells. Exposure of ESCC cancer cells to ZOL plus radiation resulted in increased cell death through arresting the cell cycle between S and G2/M phases. ZOL appeared to inhibit proliferation, tube formation and invasion of endothelial cells. These anti-angiogenetic effects were more marked concurrently with irradiation. In addition, synergistic suppressive effects on VEGF expression were observed after combined treatment. Our data suggest that the combination of ZOL and radiation is a promising therapeutic strategy to enhance radiation therapy for ESCC patients.  相似文献   

13.
Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway—alone or in combination—would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.  相似文献   

14.
Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.  相似文献   

15.
It is known that the relationship between pro-angiogenic and anti-angiogenic factors is responsible for the presence and intensity of neoangiogenesis. The angiogenic factors are produced by tumour cells and/or by tumour-infiltrating inflammatory cells such as macrophages or polymorphonuclear leukocytes (PMN). In the present study we compared VEGF secretion with IL-18 and NO release by PMN derived from oral cavity cancer patients. Knowledge of the relationship between mediators above could help in better understanding the role of PMN in angiogenesis in this patient group. The results from culture supernatants of PMN were confronted with the serum levels of parameters examined. We found an interesting relationship between VEGF and IL-18 concentrations in the culture supernatants of PMN derived from patients with oral cavity cancer. High production of VEGF was associated with low production of IL-18 by PMN derived from patients before treatment. During examinations after treatment we found lower concentrations of VEGF and higher concentrations of IL-18 than those in the study before treatment. In contrast to VEGF and IL-18, the NO production by PMN of cancer patients, before and after treatment, was unchanged. We also demonstrated markedly elevated serum levels of VEGF as well as IL-18 according to the progression of the disease. Results obtained indicate that relations between VEGF and IL-18 released by PMN may promote neoangiogenesis and may be important for benign tumour cells to acquire metastatic phenotype in the early stage of oral cavity cancer. Furthermore, our results suggest that the concentrations of VEGF and IL-18 in the serum are sensitive tumour markers in this patient group before and after treatment.  相似文献   

16.
上皮细胞-间质细胞转化(EMT)在肿瘤转移方面起着非常重要的作用.肾癌发生EMT的具体分子机制尚不清楚.IL-8是一个重要的炎症趋化因子,研究表明肾癌细胞可以分泌IL-8,但IL-8是否参与肾癌细胞EMT的调节目前尚无报道.我们研究发现,IL-8可以促进肾癌细胞形态发生间质化改变,IL-8刺激后E-钙黏蛋白表达水平下降, N-钙黏蛋白表达上调.另外,IL-8可以促进肾癌细胞侵袭,但对肾癌细胞增殖的影响并不明显.进一步研究显示,IL-8通过激活蛋白激酶C(PKC)引起细胞外调节性激酶(ERK)磷酸化.因此,我们认为IL-8可能通过PKC/ERK信号通路促进肾癌细胞发生EMT,这可能是肾癌转移的重要机制之一.  相似文献   

17.
18.
Therapeutic radiation is widely used in cancer treatments. The success of radiation therapy depends not only on the radiosensitivity of tumor cells but also on the radiosensitivity of endothelial cells lining the tumor vasculature. Vascular endothelial growth factor (VEGF) plays a critical role in protecting endothelial cells against a number of antitumor agents including ionizing radiation. Strategies designed to overcome the survival advantage afforded to endothelial cells by VEGF might aid in enhancing the efficacy of radiation therapy. In this report we examined the signaling cascade(s) involved in VEGF-mediated protection of endothelial cells against gamma-irradiation. gamma-Irradiation-induced apoptosis of human dermal microvascular endothelial cells (HDMECs) was predominantly mediated through the p38 MAPK pathway as an inhibitor of p38 MAPK (PD169316), and dominant negative mutants of p38 MAPK could significantly enhance HDMEC survival against gamma-irradiation. Inhibition of the PI3K and MAPK pathways markedly up-regulated gamma-irradiation-mediated p38 MAPK activation resulting in enhanced HDMEC apoptosis. In contrast, VEGF-treated HDMECs were protected from gamma-irradiation-induced apoptosis predominantly through the PI3K/Akt pathway. Bcl-2 expression was markedly elevated in VEGF-treated HDMECs, and it was significantly inhibited by the PI3K inhibitor LY294002. HDMECs exposed to irradiation showed a significant decrease in Bcl-2 expression. In contrast, VEGF-stimulated HDMECs, when irradiated, maintained higher levels of Bcl-2 expression. Taken together our results suggest that gamma-irradiation induces endothelial cell apoptosis predominantly via the activation of p38 MAPK, and VEGF protects endothelial cells against gamma-irradiation predominantly via the PI3K-Akt-Bcl-2 signaling pathway.  相似文献   

19.
The effects of ionizing radiation on osteoblast-like cells in vitro   总被引:9,自引:0,他引:9  
The well-described detrimental effects of ionizing radiation on the regeneration of bone within a fracture site include decreased osteocyte number, suppressed osteoblast activity, and diminished vascularity. However, the biologic mechanisms underlying osteoradionecrosis and the impaired fracture healing of irradiated bone remain undefined. Ionizing radiation may decrease successful osseous repair by altering cytokine expression profiles resulting from or leading to a change in the osteoblastic differentiation state. These changes may, in turn, cause alterations in osteoblast proliferation and extracellular matrix formation. The purpose of this study was to investigate the effects of ionizing radiation on the proliferation, maturation, and cytokine production of MC3T3-E1 osteoblast-like cells in vitro. Specifically, the authors examined the effects of varying doses of ionizing radiation (0, 40, 400, and 800 cGy) on the expression of transforming growth factor-beta1 (TGF-beta1), vascular endothelial growth factor (VEGF), and alkaline phosphatase. In addition, the authors studied the effects of ionizing radiation on MC3T3-E1 cellular proliferation and the ability of conditioned media obtained from control and irradiated cells to regulate the proliferation of bovine aortic endothelial cells. Finally, the authors evaluated the effects of adenovirus-mediated TGF-beta1 gene therapy in an effort to "rescue" irradiated osteoblasts. The exposure of osteoblast-like cells to ionizing radiation resulted in dose-dependent decreases in cellular proliferation and promoted cellular differentiation (i.e., increased alkaline phosphatase production). Additionally, ionizing radiation caused dose-dependent decreases in total TGF-beta1 and VEGF protein production. Decreases in total TGF-beta1 production were due to a decrease in TGF-beta1 production per cell. In contrast, decreased total VEGF production was secondary to decreases in cellular proliferation, because the cellular production of VEGF by irradiated osteoblasts was moderately increased when VEGF production was corrected for cell number. Additionally, in contrast to control cells (i.e., nonirradiated), conditioned media obtained from irradiated osteoblasts failed to stimulate the proliferation of bovine aortic endothelial cells. Finally, transfection of control and irradiated cells with a replication-deficient TGF-beta1 adenovirus before irradiation resulted in an increase in cellular production of TGF-beta1 protein and VEGF. Interestingly, this intervention did not alter the effects of irradiation on cellular proliferation, which implies that alterations in TGF-beta1 expression do not underlie the deficiencies noted in cellular proliferation. The authors hypothesize that ionizing radiation-induced alterations in the cytokine profiles and differentiation states of osteoblasts may provide insights into the cellular mechanisms underlying osteoradionecrosis and impaired fracture healing.  相似文献   

20.
Tubulogenesis by epithelial cells regulates kidney, lung, and mammary development, whereas that by endothelial cells regulates vascular development. Although functionally dissimilar, the processes necessary for tubulation by epithelial and endothelial cells are very similar. We performed microarray analysis to further our understanding of tubulogenesis and observed a robust induction of regulator of G protein signaling 4 (RGS4) mRNA expression solely in tubulating cells, thereby implicating RGS4 as a potential regulator of tubulogenesis. Accordingly, RGS4 overexpression delayed and altered lung epithelial cell tubulation by selectively inhibiting G protein-mediated p38 MAPK activation, and, consequently, by reducing epithelial cell proliferation, migration, and expression of vascular endothelial growth factor (VEGF). The tubulogenic defects imparted by RGS4 in epithelial cells, including its reduction in VEGF expression, were rescued by overexpression of constitutively active MKK6, an activator of p38 MAPK. Similarly, RGS4 overexpression abrogated endothelial cell angiogenic sprouting by inhibiting their synthesis of DNA and invasion through synthetic basement membranes. We further show that RGS4 expression antagonized VEGF stimulation of DNA synthesis and extracellular signal-regulated kinase (ERK)1/ERK2 and p38 MAPK activation as well as ERK1/ERK2 activation stimulated by endothelin-1 and angiotensin II. RGS4 had no effect on the phosphorylation of Smad1 and Smad2 by bone morphogenic protein-7 and transforming growth factor-beta, respectively, indicating that RGS4 selectively inhibits G protein and VEGF signaling in endothelial cells. Finally, we found that RGS4 reduced endothelial cell response to VEGF by decreasing VEGF receptor-2 (KDR) expression. We therefore propose RGS4 as a novel antagonist of epithelial and endothelial cell tubulogenesis that selectively antagonizes intracellular signaling by G proteins and VEGF, thereby inhibiting cell proliferation, migration, and invasion, and VEGF and KDR expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号