首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
A procedure for the synthesis of a ratiometric viscosity fluorescent sensor is described in this protocol. The essential requirement for the design of this sensor is the attachment of a primary fluorophore that has both a viscosity-independent fluorescence emission (coumarin dye shown in blue) and an emission from a fluorophore that exhibits viscosity-dependent fluorescent quantum yield (p-amino cinnamonitrile dye shown in red). The use of sensor 1 in viscosity measurements involves solubilization in a liquid of interest and excitation of the primary fluorophore at lambda(ex) = 360 nm. The secondary fluorophore is simultaneously excited via resonance energy transfer. The ratio of the fluorescent emission of the secondary over the primary fluorophore provides a fast and precise measurement of the viscosity of the solvent. The synthesis of compound 1 using commercially available materials can be completed within 5 d.  相似文献   

2.
Diffusion is often an important rate-determining step in chemical reactions or biological processes and plays a role in a wide range of intracellular events. Viscosity is one of the key parameters affecting the diffusion of molecules and proteins, and changes in viscosity have been linked to disease and malfunction at the cellular level.1-3 While methods to measure the bulk viscosity are well developed, imaging microviscosity remains a challenge. Viscosity maps of microscopic objects, such as single cells, have until recently been hard to obtain. Mapping viscosity with fluorescence techniques is advantageous because, similar to other optical techniques, it is minimally invasive, non-destructive and can be applied to living cells and tissues.Fluorescent molecular rotors exhibit fluorescence lifetimes and quantum yields which are a function of the viscosity of their microenvironment.4,5 Intramolecular twisting or rotation leads to non-radiative decay from the excited state back to the ground state. A viscous environment slows this rotation or twisting, restricting access to this non-radiative decay pathway. This leads to an increase in the fluorescence quantum yield and the fluorescence lifetime. Fluorescence Lifetime Imaging (FLIM) of modified hydrophobic BODIPY dyes that act as fluorescent molecular rotors show that the fluorescence lifetime of these probes is a function of the microviscosity of their environment.6-8 A logarithmic plot of the fluorescence lifetime versus the solvent viscosity yields a straight line that obeys the Förster Hoffman equation.9 This plot also serves as a calibration graph to convert fluorescence lifetime into viscosity.Following incubation of living cells with the modified BODIPY fluorescent molecular rotor, a punctate dye distribution is observed in the fluorescence images. The viscosity value obtained in the puncta in live cells is around 100 times higher than that of water and of cellular cytoplasm.6,7 Time-resolved fluorescence anisotropy measurements yield rotational correlation times in agreement with these large microviscosity values. Mapping the fluorescence lifetime is independent of the fluorescence intensity, and thus allows the separation of probe concentration and viscosity effects. In summary, we have developed a practical and versatile approach to map the microviscosity in cells based on FLIM of fluorescent molecular rotors.  相似文献   

3.
BACKGROUND: Molecular rotors exhibit viscosity-dependent quantum yield, allowing non-mechanical determination of fluid viscosity. We analyzed fluorescence in the presence of viscosity-modulating macromolecules several orders of magnitude larger than the rotor molecule. METHOD OF APPROACH: Fluorescence of aqueous starch solutions with a molecular rotor in solution was related to viscosity obtained in a cone-and-plate viscometer. RESULTS: In dextran solutions, emission intensity was found to follow a power-law relationship with viscosity. Fluorescence in hydroxyethylstarch solutions showed biexponential behavior with different exponents at viscosities above and below 1.5 mPa s. Quantum yield was generally higher in hydroxyethylstarch than in dextran solutions. The power-law relationship was used to backcalculate viscosity from intensity with an average precision of 2.2% (range of -5.5% to 5.1%). CONCLUSIONS: This study indicates that hydrophilic molecular rotors are suitable as colloid solution viscosity probes after colloid-dependent calibration.  相似文献   

4.
The extracellular space (ECS) is the aqueous matrix surrounding cells in solid tissues. The only method to measure ECS volume fraction (α) in vivo has been tetramethylammonium iontophoresis, a technically challenging method developed more than 25 years ago. We report a simple, quantitative method to measure α by microfiberoptic fluorescence detection of a self-quenched green dye, calcein, and a reference red dye, sulforhodamine 101, after pulsed iontophoretic infusion. The idea is that the maximum increase in calcein fluorescence after iontophoresis is proportional to the aqueous volume into which the dye is deposited. We validated the method theoretically, and experimentally, using cell-embedded gels with specified α and ECS viscosity. Measurements in living mice gave α of 0.20 ± 0.01 in brain, 0.13 ± 0.02 in kidney and 0.074 ± 0.01 in skeletal muscle. The technical simplicity of the ”pulsed-infusion microfiberoptic photodetection” method developed here should allow elucidation of the relatively understudied biological roles of the ECS.  相似文献   

5.
We utilize the fluorescent molecular rotor Bodipy-C12 to investigate the viscoelastic properties of hydrophobic layers of bacterial spores Bacillus subtilis. The molecular rotor shows a marked increase in fluorescence lifetime, from 0.3 to 4 ns, upon viscosity increase from 1 to 1500 cP and can be incorporated into the hydrophobic layers within the spores from dormant state through to germination. We use fluorescence lifetime imaging microscopy to visualize the viscosity inside different compartments of the bacterial spore in order to investigate the inner membrane and relate its compaction to the extreme resistance observed during exposure of spores to toxic chemicals. We demonstrate that the bacterial spores possess an inner membrane that is characterized by a very high viscosity, exceeding 1000 cP, where the lipid bilayer is likely in a gel state. We also show that this membrane evolves during germination to reach a viscosity value close to that of a vegetative cell membrane, ca. 600 cP. The present study demonstrates quantitative imaging of the microscopic viscosity in hydrophobic layers of bacterial spores Bacillus subtilis and shows the potential for further investigation of spore membranes under environmental stress.  相似文献   

6.
Blood viscosity changes with many pathologic conditions, but its importance has not been fully investigated because the current methods of measurement are poorly suited for clinical applications. The use of viscosity-sensitive fluorescent molecular rotors to determine fluid viscosity in a nonmechanical manner has been investigated recently, but it is unknown how the precision of the fluorescence-based method compares to established mechanical viscometry. Human blood plasma viscosity was modulated with high-viscosity plasma expanders, dextran, pentastarch, and hetastarch. The samples were divided into a calibration and a test set. The relationship between fluorescence emission and viscosity was established using the calibration set. Viscosity of the test set was determined by fluorescence and by cone-and-plate viscometer, and the precision of both methods compared. Molecular rotor fluorescence intensity showed a power law relationship with solution viscosity. Mechanical measurements deviated from the theoretical viscosity value by less than 7.6%, while fluorescence-based measurements deviated by less than 6%. The average coefficient of variation was 6.9% (mechanical measurement) and 3.4% to 3.8% (fluorescence-based measurement, depending on the molecular rotor used). Fluorescence-based viscometry exhibits comparable precision to mechanical viscometry. Fluorescence viscometry does not apply shear and is therefore more practical for biofluids which have apparent non-Newtonian properties. In addition, fluorescence instrumentation makes very fast serial measurements possible, thus promising new areas of application in laboratory and clinical settings.  相似文献   

7.
Fluorescence-based glucose sensors using glucose-binding protein (GBP) as the receptor have employed fluorescence resonance energy transfer (FRET) and environmentally sensitive dyes, but with widely varying sensitivity. We therefore compared signal changes in (a) a FRET system constructed by transglutaminase-mediated N-terminal attachment of Alexa Fluor 488/555 as donor and QSY 7 as acceptor at Cys 152 or 182 mutations with (b) GBP labelled with the environmentally sensitive dye badan at C152 or 182. Both FRET systems had a small maximal fluorescence change at saturating glucose (7% and 16%), badan attached at C152 was associated with a 300% maximal fluorescence increase with glucose, though with badan at C182 there was no change. We conclude that glucose sensing based on GBP and FRET does not produce a larger enough signal change for clinical use; both the nature of the environmentally sensitive dye and its site of conjugation seem important for maximum signal change; badan-GBP152C has a large glucose-induced fluorescence change, suitable for development as a glucose sensor.  相似文献   

8.
We report fluorescence lifetime and rotational anisotropy measurements of the fluorescent dye Alexa647 attached to the guanylate cyclase-activating protein 2 (GCAP2), an intracellular myristoylated calcium sensor protein operating in photoreceptor cells. By linking the dye to different protein regions critical for monitoring calcium-induced conformational changes, we could measure fluorescence lifetimes and rotational correlation times as a function of myristoylation, calcium, and position of the attached dye, while GCAP2 was still able to regulate guanylate cyclase in a Ca(2+)-sensitive manner. We observe distinct site-specific variations in the fluorescence dynamics when externally changing the protein conformation. A clear reduction in fluorescence lifetime suggests that in the calcium-free state a dye marker in amino acid position 131 senses a more hydrophobic protein environment than in position 111. Saturating GCAP2 with calcium increases the fluorescence lifetime and hence leads to larger exposure of position 111 to the solvent and at the same time to a movement of position 131 into a hydrophobic protein cleft. In addition, we find distinct, biexponential anisotropy decays reflecting the reorientational motion of the fluorophore dipole and the dye/protein complex, respectively. Our experimental data are well described by a "wobbling-in-a-cone" model and reveal that for dye markers in position 111 of the GCAP2 protein both addition of calcium and myristoylation results in a pronounced increase in orientational flexibility of the fluorophore. Our results provide evidence that the up-and-down movement of an α-helix that is situated between position 111 and 131 is a key feature of the dynamics of the protein-dye complex. Operation of this piston-like movement is triggered by the intracellular messenger calcium.  相似文献   

9.

Luminescence spectroscopy coupled with molecular rotors was used in the TNO Intestinal Model-1 (TIM-1) to monitor in situ changes to luminal viscosity of three maize starch samples varying in the amylose-to-amylopectin ratio (AM: AP): normal, high amylose (AM) and high amylopectin (AP). The fluorescence intensity (FI) of Fast Green (FG), a proven micro (and bulk) viscosity probe, was monitored throughout digestion to track changes in the gastric viscosity. The FI of FG and the viscosity imparted by the starch followed a power-law relationship. The emission of the MR was unaffected by the composition of TIM-1 secretion fluids nor pH. Hence, direct measurements of digesta FI are sensitive to changing viscosity during the simulated digestion. The viscosity was highest for AP, followed by normal starch, and high AM had the lowest viscosity. In the TIM-1 gastric compartment, from highest to lowest FI, and thus viscosity was high AM > high AP > normal maize starches. We conclude the validity of the proposed method to facilitate the measurement of luminal viscosity, in vitro, when the microviscosity represents bulk viscosity (i.e., when the increase in bulk viscosity is a result of molecular crowding and the surrounding environment around the rotor is homogeneous). Careful consideration is required when foods are heterogeneous as molecular rotors report only on their local non-uniform environment.

  相似文献   

10.
We report herein on the development of a new photochrome-fluorescence-spin method for the quantitative analysis of the redox status and viscosity of a medium. The method of the viscosity measurement is based on the use of double fluorescence-nitroxide molecules. In such hybrid compounds the nitroxide moiety quenches the fluorescence of the fluorophore (stilbene moiety). The reduction of nitroxide by an antioxidant (ascorbic acid) causes a rise of fluorescence of the fluorophore. The rate constant of the stilbene fragment photoisomerization in such systems is dependent upon the viscosity of the media.The synthesized dual stilbene-nitroxide probe was covalently immobilized onto the surface of a quartz plate as an eventual fiber-optic sensor. The immobilization procedure included a cyanogen bromide surface activation followed by smoothing with a protein tether. The rate of fluorescence change was monitored in aqueous-glycerol solutions of different viscosities and content of ascorbic acid. Good correlation was found: (a) between the concentration of ascorbic acid in the sample and the rate of fluorescence increase due to the reduction of the nitroxide moiety, and (b) between the rate constant of photoisomerization and the viscosity of the media. Appropriate calibration would make the determination of the viscosity of a media possible (in a range 1-500 cP), as well as ascorbate content, in a range (1-9) x 10(-4) M, with fast single measurement.  相似文献   

11.
A new, proven, economical spectrofluorimetric approach has been used to determine the proton pump inhibitor omeprazole (OMP). This innovative technique is based on the ability of OMP to quench the native fluorescence of the mercurochrome dye in an acidic (pH 3.6) solution. Because it was discovered that quenching is proportional to the drug concentration, this dye was used as a sensor for OMP detection. The fluorescence intensity was measured at 518/540 nm, and its linear response ranged from 0.2–10.0 μg/mL with a linear coefficient of 0.9999. The computation yielded a limit of quantification (LOQ) of 0.20 μg/mL and a limit of detection (LOD) of 0.07 μg/mL. Every circumstance and element impacting the reaction product was examined in detail. Pharmacopeial standards carried out the validation. The approved method investigated several commercial preparations and formulations, and the results were favorably compared with those provided by a reference method. According to United States Pharmacopeia (USP) rules, content consistency for two distinct formulations was evaluated.  相似文献   

12.
Feng T  Feng D  Shi W  Li X  Ma H 《Molecular bioSystems》2012,8(5):1441-1445
This paper presents a novel sensor to detect proteolytically active prostate-specific antigen (PSA) by assembling a purpose-designed FITC-labeled peptide with graphene oxide (GO). The fluorescence of the dye-labeled peptide was quenched in the presence of GO. Reaction of the sensor with PSA cleaves the peptide, leading to the release of the dye moiety and a great increase in fluorescence intensity in a dose- and time-dependent manner, and PSA can be quantified accordingly. This approach is simple compared to existing methods since the GO-peptide-based sensor is easily assembled and detection can be achieved without the involvement of complicated procedures. Moreover, the applicability of the method has been demonstrated by detecting PSA in spiked urine samples.  相似文献   

13.
Many disease states have associated blood viscosity changes. Molecular rotors, fluorescent molecules with viscosity sensitive quantum yields, have recently been investigated as a new method for biofluid viscosity measurement. Current viscometer measurements are complicated by proteins adhering to surfaces and forming air-surface layers. It is unknown at this time what effects proteins may have on biofluid viscosity measurements using molecular rotors. To answer this question, binding affinities to blood plasma proteins were investigated by equilibrium dialysis for four hydrophilic molecular rotors. Aqueous solutions of 9-[(2-cyano-2-hydroxy-carbonyl)vinyl]julolidine (CCVJ) and three derivatives were prepared and dialyzed against solutions of bovine source albumin, fibrinogen and immunoglobulin G approximating normal physiologic concentrations and fresh-frozen human plasma. After equilibration, dye concentration on each side of the dialysis membrane was assessed by spectrophotometry. The relative binding affinity of the four dyes to the proteins and to the plasma was compared. Affinity of all dyes was highest for albumin. The bound dye fraction showed little change in relation to protein concentration in the physiological concentration range. Diol, the most hydrophilic molecular rotor tested showed the lowest affinity for albumin. This study indicates that hydrophilic molecular rotors are well-suited for biofluid viscosity measurement.  相似文献   

14.
Molecular rotors are a form of fluorescent intramolecular charge-transfer complexes that can undergo intramolecular twisting motion upon photoexcitation. Twisted-state formation leads to non-radiative relaxation that competes with fluorescence emission. In bulk solutions, these molecules exhibit a viscosity-dependent quantum yield. On the molecular scale, the fluorescence emission is a function of the local free volume, which in turn is related to the local micro-viscosity. Membrane viscosity, and the inverse; fluidity, are characteristic terms used to describe the ease of movement withing the membrane. Often, changes in membrane viscosity govern intracellular processes and are indicative of a disease state. Molecular rotors have been used to investigate viscosity changes in liposomes and cells, but accuracy is affected by local concentration gradients and sample optical properties. We have developed self-calibrating ratiometric molecular rotors to overcome this challenge and integrated the new molecules into a DLPC liposome model exposed to the membrane-fluidizing agent propanol. We show that the ratiometric emission intensity linearly decreases with the propanol exposure and that the ratiometric intensity is widely independent of the total liposome concentration. Conversely, dye concentration inside liposomes influences the sensitivity of the system. We suggest that the new self-calibrating dyes can be used for real-time viscosity sensing in liposome systems with the advantages of lifetime measurements, but with low-cost steady-state instrumentation.  相似文献   

15.
In aqueous solution, 4-[4-(dimethylamino)styryl]pyridine (DMASP) derivatives displayed dual fluorescence, in which excitation at either 469 or 360 nm produced an emission band near 600 nm. Increasing the viscosity of the environment intensified the fluorescence emission obtained at the longer wavelength of excitation, whereas the emission at the lower wavelength of excitation showed little change in intensity. Thus, using the ratio of the 600 nm emission obtained by exciting at 469 nm to that obtained with 360 nm excitation, it is possible to obtain a value related to the local viscosity that does not depend on the system parameters. The fluorescence emission of the dye in aqueous solution, as well as in living cells, is well suited for use with visible fluorescence spectroscopy. The N-carboxymethyl butyl ester DMASP derivative (1) was found to be irreversibly loaded into living smooth muscle cells, presumably because it is hydrolyzed by cellular esterases, transforming it into a membrane-impermeable fluorescent carboxylate DMASP derivative. (2) After calibrating 2 against glycerol/water and sucrose/water mixtures of known viscosity, the fluorescence ratio generated from cultured smooth muscle cells in dual-excitation mode gave an average intracellular viscosity of 4.5 cP. This value corresponds to those reported in the literature.  相似文献   

16.
A biosensor for the continuous optical determination of cholesterol is presented. Cholesterol oxidase is immobilized covalently on a nylon membrane and the consumption of oxygen is measured by following, via fiberoptic bundles, the changes in fluorescence of an oxygen-sensitive dye whose fluorescence is dynamically quenched by molecular oxygen. The dye is dissolved in a very thin silicone membrane placed beneath the enzyme layer. During interaction of the enzyme with cholesterol, oxygen is consumed, which is indicated by the fluorescent dye. At pH 7.25, the analytical range of the sensor is 0.2 to 3 mM and the time to reach a full steady state in a flowing solution ranges from 7 to 12 min.  相似文献   

17.
The location and orientation of a linear dye molecule, DODCI, in lipid bilayer membrane were determined by the effect of viscosity and refractive index of the aqueous medium on the fluorescence properties of the dye bound to the membrane. The membrane-bound dye is solubilized in two sites, one near the surface (short fluorescence lifetime) and another in the interior of the membrane (long lifetime). The ratio of the dye in the two locations and the orientation of the dye (parallel or perpendicular to the membrane) are sensitive to the lipid chain length and unsaturation in the alkyl chain. The fraction of the dye in the interior region is higher for short alkyl chains (C12>C14>C16>C18C20) and in unsaturated lipids (C14:1>C14:0, C16:1>C16:0). These experimental results are consistent with the general principle that the penetration of an amphiphilic organic molecule in the interior region of the membrane is more when the structure of th bilayer is more fluid-like.  相似文献   

18.
The fluorescence and circular dichroism of quinacrine complexed with nucleic acids and chromatin were measured to estimate the relative magnitudes of factors influencing the fluorescence banding patterns of chromosomes stained with quinacrine or quinacrine mustard. DNA base composition can influence quinacrine fluorescence in at least two ways. The major effect, evident at low ratios of quinacrine to DNA, is a quenching of dye fluorescence, correlating with G-C composition. This may occur largely prior to relaxation of excited dye molecules. At higher dye/DNA saturations, which might exist in cytological chromosome preparations stained with high concentrations of quinacrine, energy transfer between dye molecules converts dyes bound near G-C base pairs into energy sinks. In contrast to its influence on quinacrine fluorescence, DNA base composition has very little effect on either quinacrine binding affinity or the circular dichroism of bound quinacrine molecules. The synthetic polynucleotides poly(dA-dT) and poly(dA)-poly(dT) have a similar effect on quinacrine fluorescence, but differ markedly in their affinity for quinacrine and in the circular dichroism changes associated with quinacrine binding. Quinacrine fluorescence intensity and lifetime are slightly less when bound to calf thymus chromatin than when bound to calf thymus DNA, and minor differences in circular dichroism between these complexes are observed. Chromosomal proteins probably affect the fluorescence of chromosomes stained with quinacrine, although this effect appears to be much less than that due to variations in DNA base composition. The fluorescence of cytological chromosome preparations may also be influenced by fixation effects and macroscopic variations in chromosome coiling.  相似文献   

19.
In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA) and ANS - bovine serum albumin (BSA) interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.  相似文献   

20.
This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo 1H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by ∼5%, whereas that in G-actin solution was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1 ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号