首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface-enhanced laser desorption/ionization-mass spectrometry (SELDI-MS) has conventionally been practiced on linear time of flight (TOF) which has low mass accuracy and resolution. Here we demonstrate in an examination of both malignant and nonmalignant endometrial tissue homogenates that high mass accuracy and resolution in the MS stage are crucial. Using a commercially available quadrupole/TOF (QqTOF), we were able to resolve two potential cancer markers, subsequently identified off-line as chaperonin 10 and calgranulin A, that differ by 8 Da in mass. Two off-line protein identification protocols were developed: the first was based on size-exclusion chromatography (SEC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), protein extraction, trypsin digestion, and matrix-assisted laser desorption/ionization-tandem MS (MALDI-MS/MS); the second on SEC and shotgun nano-liquid chromatography (nanoLC)-MS/MS. Analyses on a cohort of 44 endometrial homogenates showed 22 out of 23 nonmalignant samples had nondetectable to very low abundance of chaperonin 10 and calgranulin A; 17 of the 21 malignant samples had detectable to abundant levels of both proteins. Immunohistochemical staining of a tissue microarray of 32 samples showed that approximately half of malignant endometrial tissues exhibited positive staining for calgranulin A in the malignant epithelium, while 9 out of 10 benign tissues exhibited negative epithelial staining. In addition, macrophages/granulocytes in malignant as well as nonmalignant tissues showed positive staining. No immunostaining occurred in stroma or myometrium. Calgranulin A, in combination with chaperonin 10 and other proteins, may eventually constitute a panel of markers to permit diagnosis and screening of endometrial cancer.  相似文献   

2.
The identification and validation of the targets of active compounds identified in cell-based assays is an important step in preclinical drug development. New analytical approaches that combine drug affinity pull-down assays with mass spectrometry (MS) could lead to the identification of new targets and druggable pathways. In this work, we investigate a drug-target system consisting of ampicillin- and penicillin-binding proteins (PBPs) to evaluate and compare different amino-reactive resins for the immobilization of the affinity compound and mass spectrometric methods to identify proteins from drug affinity pull-down assays. First, ampicillin was immobilized onto various amino-reactive resins, which were compared in the ampicillin-PBP model with respect to their nonspecific binding of proteins from an Escherichia coli membrane extract. Dynal M-270 magnetic beads were chosen to further study the system as a model for capturing and identifying the targets of ampicillin, PBPs that were specifically and covalently bound to the immobilized ampicillin. The PBPs were identified, after in situ digestion of proteins bound to ampicillin directly on the beads, by using either one-dimensional (1-D) or two-dimensional (2-D) liquid chromatography (LC) separation techniques followed by tandem mass spectrometry (MS/MS) analysis. Alternatively, an elution with N-lauroylsarcosine (sarcosyl) from the ampicillin beads followed by in situ digestion and 2-D LC-MS/MS analysis identified proteins potentially interacting noncovalently with the PBPs or the ampicillin. The in situ approach required only little time, resources, and sample for the analysis. The combination of drug affinity pull-down assays with in situ digestion and 2-D LC-MS/MS analysis is a useful tool in obtaining complex information about a primary drug target as well as its protein interactors.  相似文献   

3.
In the last several years, interest has increased significantly about the endocannabinoids anandamide and 2-arachidonylglycerol, two lipid messengers that activate cannabinoid receptors. Quantification of these compounds in biological samples presents numerous technical challenges. Because of their low abundance, endocannabinoids are usually quantified by isotope dilution assays using mass spectrometry coupled to either gas chromatography or high-performance liquid chromatography. Although endocannabinoid levels in biological fluids, such as plasma and cerebrospinal fluid, can be directly determined by these techniques, the complex lipid profile of brain tissue samples mandates purification of lipid extracts before GC/MS analysis; this step is not necessary when using HPLC/MS. We have found that when silica gel chromatography is used for endocannabinoid purification, poor recovery and loss of deuterium from the internal standards lead to inaccurate estimation of endocannabinoid levels. By contrast, purification strategies using C(18) solid-phase extraction permits precise and reproducible GC/MS quantification of endocannabinoids in tissue samples.  相似文献   

4.
At present, mass spectrometry provides a rapid and sensitive means for making conclusive protein identifications from complex mixtures. Sequencing tryptic peptides derived from proteolyzed protein samples, also known as the "Bottom Up" approach, is the mass spectrometric gold standard for identifying unknowns. An alternative technology, "Top Down" characterization, is emerging as a viable option for protein identifications, which involves analyzing the intact unknowns for accurate mass and amino acid sequence tags. In this paper, both characterization methods were employed to more comprehensively differentiate two early-eluting peaks in a process-scale size-exclusion chromatography (SEC) step for a recombinant, immunoglobulin gamma-1 (IgG-1) fusion protein. The contents of each SEC peak were enzymatically digested, and the resulting peptides were mapped using reversed-phase (RP) HPLC-ion trap MS. Many low-level UV signals were observed among the fusion protein-related peptide peaks. These unknowns were collected, concentrated, and analyzed using nanoelectrospray (nanoES) collision-induced dissociation (CID) tandem (MS/MS) mass spectrometry for identification. The peptide sequencing experiments resulted in the identification of twenty host cell-related proteins. Following peptide mapping, the contents of the two SEC peaks were protein mass profiled using on-line RP HPLC coupled to a high-resolution, quadrupole time-of-flight (Qq/TOF) MS. Unknown proteins were also collected, concentrated, and dissociated using nanoES CID MS/MS. Intact protein CID experiments and accurate molecular weight information allowed for the identification of three full length host cell-derived proteins and numerous clips from these and additional proteins. The accurate molecular weight values allowed for the assignment of N- and C-terminal processing, which is difficult to conclusively access from peptide mapping data. The peptide-mapping experiments proved to be far more effective for making protein identifications from complex mixtures, whereas the protein mass profiling was useful for assessing modifications and distinguishing protein clips from full length species.  相似文献   

5.
This study compares 16 different extraction methods for the comprehensive extraction of mouse brain proteome in combination with "shotgun"-based mass spectrometry (MS). Membrane proteins (MPs) are responsible for a large part of the regulatory functions of the cell and are therefore of great interest to extract and analyze. Sixteen protein extraction protocols were evaluated in regards to protein yield and number of identified proteins with emphasis on MPs. The extracted proteins were delipidated, on-filter digested, and analyzed by reversed phase nanoliquid chromatography (RP-nanoLC) in combination with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using a 7 T hybrid LTQ-FT mass spectrometer. Detergent-based lysis buffers showed higher efficiencies and yields in the extraction of proteins from the brain tissue compared to solubilization with organic solvents or organic acids. The detergent octyl-β-D-glucopyranoside gave the highest number of identified proteins (541) as well as numbers and percentages of identified MPs (29%). Detergent-based protocols are the best sample preparation tools for central nervous system (CNS) tissue and can readily be applied to screen for candidate biomarkers of neurological diseases.  相似文献   

6.
Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.  相似文献   

7.
A method using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS) was developed to screen and confirm residues of multi-class veterinary drugs in animal tissues (porcine kidney, liver, muscle; bovine muscle). Thirty target drugs (19 β-blockers, 11 sedatives) were determined simultaneously in a single run. Homogenized tissue samples were extracted with acetonitrile and purified using a NH2 solid-phase extraction cartridge. An Acquity UPLC? BEH C18 column was used to separate the analytes, followed by tandem mass spectrometry using an electrospray ionization source in positive mode. Recovery studies were done at three fortification levels. Overall average recoveries in pig muscle, kidney, and liver fortified at three levels from 76.4% to 118.6% based on matrix-fortified calibration with coefficients of variation from 2.2% to 19.9% (n = 6). The limit of quantification of these compounds in different matrices was 0.5–2.0 μg/kg. This method was successfully applied in screening and confirming target drugs in >200 samples.  相似文献   

8.
Zinc (Zn) is an essential trace element in all living organisms, but is toxic in excess. Several plant species are able to accumulate Zn at extraordinarily high concentrations in the leaf epidermis without showing any toxicity symptoms. However, the molecular mechanisms of this phenomenon are still poorly understood. A state‐of‐the‐art quantitative 2D liquid chromatography/tandem mass spectrometry (2D‐LC‐MS/MS) proteomics approach was used to investigate the abundance of proteins involved in Zn hyperaccumulation in leaf epidermal and mesophyll tissues of Noccaea caerulescens. Furthermore, the Zn speciation in planta was analyzed by a size‐exclusion chromatography/inductively coupled plasma mass spectrometer (SEC‐ICP‐MS) method, in order to identify the Zn‐binding ligands and mechanisms responsible for Zn hyperaccumulation. Epidermal cells have an increased capability to cope with the oxidative stress that results from excess Zn, as indicated by a higher abundance of glutathione S‐transferase proteins. A Zn importer of the ZIP family was more abundant in the epidermal tissue than in the mesophyll tissue, but the vacuolar Zn transporter MTP1 was equally distributed. Almost all of the Zn located in the mesophyll was stored as Zn–nicotianamine complexes. In contrast, a much lower proportion of the Zn was found as Zn–nicotianamine complexes in the epidermis. However, these cells have higher concentrations of malate and citrate, and these organic acids are probably responsible for complexation of most epidermal Zn. Here we provide evidence for a cell type‐specific adaptation to excess Zn conditions and an increased ability to transport Zn into the epidermal vacuoles.  相似文献   

9.
In recent years, the applicability of using LC-MS/MS as a complementary technique to traditional ligand binding assays in the absolute quantitation of therapeutic proteins in biologic matrix has been demonstrated. Protein quantitation workflow via LC-MS/MS is primarily based on a enzymatic digestion model and recent works seek to improve selectivity and sensitivity. This review focuses on recent innovations in this field and discusses the following in detail: the applicability of two-dimensional liquid chromatography and its use to improve sensitivity and alleviate matrix ion suppression; the use of derivatization agents after digestion to improve extraction and MS ionization efficiency; techniques to reduce excess protein background and their positive effects on sensitivity, selectivity, and extraction consistency; the application of immunoaffinity extraction of proteins to enrich the analyte(s) of interest while improving selectivity and sensitivity.  相似文献   

10.
The core prerequisites for an efficient proteome-scale analysis of mammalian membrane proteins are effective isolation, solubilization, digestion and multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). This protocol is for analysis of the mammalian membrane proteome that relies on solubilization and tryptic digestion of membrane proteins in a buffer containing 60% (vol/vol) methanol. Tryptic digestion is followed by strong cation exchange (SCX) chromatography and reversed phase (RP) chromatography coupled online with MS/MS for protein identification. The use of a methanol-based buffer eliminates the need for reagents that interfere with chromatographic resolution and ionization of the peptides (e.g., detergents, chaotropes, inorganic salts). Sample losses are minimized because solubilization and digestion are carried out in a single tube avoiding any sample transfer or buffer exchange between these steps. This protocol is compatible with stable isotope labeling at the protein and peptide level, enabling identification and quantitation of integral membrane proteins. The entire procedure--beginning with isolated membrane fraction and finishing with MS data acquisition--takes 4-5 d.  相似文献   

11.
Protein analysis techniques are developing fast due to the growing number of proteins obtained by recombinant DNA techniques. In the present paper we compare selected techniques, which are used for protein sizing, quantitation and molecular weight determination: sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), lab-on-a-chip or microfluidics technology (LoaC), size exclusion chromatography (SEC) and mass spectrometry (MS). We compare advantages and limitations of each technique in respect to different application areas, analysis time, protein sizing and quantitation performance.  相似文献   

12.
Physalis peruviana could attract great interest because of its nutritional and industrial properties. It is an excellent source of vitamins, minerals, essential fatty acids and carotenoids. Physalis Peruviana is also known to have a positive impact on human health. Unfortunately, still little is known about trace elements present in Physalis Peruviana and their forms available for the human body. Thus, the aim of this study was to estimate bioaccessibility and characterization of species of cobalt, copper and selenium in Physalis Peruviana fruits.Total and extractable contents of elements were determined by mass spectrometer with inductively coupled plasma (ICP MS). In order to separate the different types of metal complexes Physalis peruviana fruits were treated with the following solvents: Tris–HCl (pH 7.4), sodium dodecyl sulfate (SDS) (pH 7.4) and ammonium acetate (pH 5.5). The best efficiency of extraction of: cobalt was obtained for ammonium acetate (56%) and Tris–HCl (60%); for copper was obtained for SDS (66%), for selenium the best extraction efficiency was obtained after extraction with SDS (48%).To obtain information about bioaccessibility of investigated elements, enzymatic extraction based on in vitro simulation of gastric (pepsin) and intestinal (pancreatin) digestion was performed. For copper and selenium the simulation of gastric digestion leads to the extraction yield above 90%, while both steps of digestion method were necessary to obtain satisfactory extraction yield in the case of cobalt.Size exclusion chromatography (SEC) coupled to on-line ICP MS detection was used to investigate collected metal species. The main fraction of metal compounds was found in the 17 kDa region. Cobalt and copper create complexes mostly with compounds extracted by means of ammonium acetate and SDS, respectively. Cobalt, copper and selenium were found to be highly bioaccessible from Physalis Peruviana. Investigation of available standards of cobalt and selenium allows confirming the presence of vitamin B12 and probably selenomethionine in the fraction bioaccessible by human body (obtained during enzymatic extraction). It should be noted that the presence of small seleno-compounds in Cape gooseberry was performed for the first time.The results show that the combination of SEC and ICP MS could provide a simple method for separating of soluble element species.  相似文献   

13.
Membrane proteins play key roles in several fundamental biological processes such as cell signalling, energy metabolism and transport. Despite the significance, these still remain an under‐represented group in proteomics datasets. Herein, a bottom‐up approach to analyse an enriched membrane fraction from Drosophila melanogaster heads using multidimensional liquid chromatography (LC) coupled with tandem‐mass spectrometry (MS/MS) that relies on complete solubilisation and digestion of proteins, is reported. An enriched membrane fraction was prepared using equilibrium density centrifugation on a discontinuous sucrose gradient, followed by solubilisation using the filter‐aided sample preparation (FASP), tryptic and sequential chymotryptic digestion of proteins. Peptides were separated by reversed‐phase (RP) LC at high pH in the first dimension and acidic RP‐LC in the second dimension coupled directly to an Orbitrap Velos Pro mass spectrometer. A total number of 4812 proteins from 114 865 redundant and 38 179 distinct peptides corresponding to 4559 genes were identified in the enriched membrane fraction from fly heads. These included brain receptors, transporters and channels that are most important elements as drug targets or are linked to disease. Data are available via ProteomeXchange with identifier PXD001712 ( http://proteomecentral.proteomexchange.org/dataset/PXD001712 ).  相似文献   

14.
Extensive site-specific glycosylation analysis of individual glycoproteins is difficult due to the nature and complexity of glycosylation in proteins. In protein mixtures, these analyses are even more difficult. We present an approach combining nonspecific protease digestion, nanoflow liquid chromatography, and tandem mass spectrometry (MS/MS) aimed at comprehensive site-specific glycosylation analysis in protein mixtures. The strategy described herein involves the analysis of a complex mixture of glycopeptides generated from immobilized-Pronase digestion of a cocktail of glycoproteins consisting of bovine lactoferrin, kappa casein, and bovine fetuin using nanoflow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (nano-LC-Q-TOF MS). The resulting glycopeptides were chromatographically separated on a micro fluidic chip packed with porous graphitized carbon and analyzed via MS and MS/MS analyses. In all, 233 glycopeptides (identified based on composition and including isomers) corresponding to 18 glycosites were observed and determined in a single mixture. The glycopeptides were a mixture of N-linked glycopeptides (containing high mannose, complex and hybrid glycans) and O-linked glycopeptides (mostly sialylated). Results from this study were comprehensive as detailed glycan microheterogeneity information was obtained. This approach presents a platform to simultaneously characterize N- and O-glycosites in the same mixture with extensive site heterogeneity.  相似文献   

15.
《MABS-AUSTIN》2013,5(1):173-184
Here we report the design and production of an antibody-fluorophore conjugate (AFC) as a non-toxic model of an antibody-drug conjugate (ADC). This AFC is based on the conjugation of dansyl sulfonamide ethyl amine (DSEA)-linker maleimide on interchain cysteines of trastuzumab used as a reference antibody. The resulting AFC was first characterized by routine analytical methods (SEC, SDS-PAGE, CE-SDS, HIC and native MS), resulting in similar chromatograms, electropherograms and mass spectra to those reported for hinge Cys-linked ADCs. IdeS digestion of the AFC was then performed, followed by reduction and analysis by liquid chromatography coupled to mass spectrometry analysis. Dye loading and distribution on light chain and Fd fragments were calculated, as well as the average dye to antibody ratio (DAR) for both monomeric and multimeric species. In addition, by analyzing the Fc fragment in the same run, full glyco-profiling and demonstration of the absence of additional conjugation was easily achieved.

As for naked antibodies and Fc-fusion proteins, IdeS proteolytic digestion may rapidly become a reference analytical method at all stages of ADC discovery, preclinical and clinical development. The method can be routinely used for comparability assays, formulation, process scale-up and transfer, and to define critical quality attributes in a quality-by-design approach.  相似文献   

16.
Here we report the design and production of an antibody-fluorophore conjugate (AFC) as a non-toxic model of an antibody-drug conjugate (ADC). This AFC is based on the conjugation of dansyl sulfonamide ethyl amine (DSEA)-linker maleimide on interchain cysteines of trastuzumab used as a reference antibody. The resulting AFC was first characterized by routine analytical methods (SEC, SDS-PAGE, CE-SDS, HIC and native MS), resulting in similar chromatograms, electropherograms and mass spectra to those reported for hinge Cys-linked ADCs. IdeS digestion of the AFC was then performed, followed by reduction and analysis by liquid chromatography coupled to mass spectrometry analysis. Dye loading and distribution on light chain and Fd fragments were calculated, as well as the average dye to antibody ratio (DAR) for both monomeric and multimeric species. In addition, by analyzing the Fc fragment in the same run, full glyco-profiling and demonstration of the absence of additional conjugation was easily achieved.   As for naked antibodies and Fc-fusion proteins, IdeS proteolytic digestion may rapidly become a reference analytical method at all stages of ADC discovery, preclinical and clinical development. The method can be routinely used for comparability assays, formulation, process scale-up and transfer, and to define critical quality attributes in a quality-by-design approach.  相似文献   

17.
Protein identification by peptide mass mapping usually involves digestion of gel-separated proteins with trypsin, followed by mass measurement of the resulting peptides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Positive identification requires measurement of enough peptide masses to obtain a definitive match with sequence information recorded in protein or DNA sequence databases. However, competitive binding and ionization of residual surfactant introduced during polyacrylamide gel electrophoresis (PAGE) can inhibit solid-phase extraction and MS analysis of tryptic peptides. We have evaluated a novel, acid-labile surfactant (ALS) as an alternative to sodium dodecylsulfate (SDS) for two-dimensional (2-D) PAGE separation and MALDI-MS mapping of proteins. ALS was substituted for SDS at the same concentration in buffers and gels used for 2-D PAGE. Manual and automated procedures for spot cutting and in-gel digestion were used to process Coomassie stained proteins for MS analysis. Results indicate that substituting ALS for SDS during PAGE can significantly increase the number of peptides detected by MALDI-MS, especially for proteins of relatively low abundance. This effect is attributed to decomposition of ALS under acidic conditions during gel staining, destaining, peptide extraction and MS sample preparation. Automated excision and digestion procedures reduce contamination by keratin and other impurities, further enhancing MS identification of gel separated proteins.  相似文献   

18.
19.
We have investigated the use of a variety of different techniques to identify as many proteins as possible in a yeast lysate, with the aim of investigating the overlap and complementarity of data from different approaches. A standard lysate was prepared from log phase yeast (Saccharomyces cerevisiae). This was then subjected to analysis via five different approaches aimed at identifying as many proteins as possible using an ion trap mass spectrometer. The total number of non-redundant protein identifications from each experiment was: 524 proteins by 2-D (SCX/C18) nanoflow liquid chromatography-liquid chromatography tandem mass spectrometry (nanoLC-LC MS/MS (MudPIT)); 381 proteins by nanoLC-MS/MS with gas phase fractionation by mass range selection; 390 proteins by nanoLC-MS/MS with gas phase fractionation by ion abundance selection; 898 proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation of proteins, in-gel digestion, and nanoLC-MS/MS of gel slices; and 422 proteins by isoelectric focusing of proteins, in-gel digestion and nanoLC-MS/MS of gel slices. The total number of non-redundant protein identifications in the five experiments was 1204. Combining only the two best experiments, the SDS-PAGE gel slices and the Mudpit, produces 1024 proteins identified, more than 85% of the total. Clearly, combining a Mudpit analysis with an SDS-PAGE gel slice experiment gives the greatest amount of protein identification information from a limited amount of sample.  相似文献   

20.
Tryptic digestion of proteins continues to be a workhorse of proteomics. Traditional tryptic digestion requires several hours to generate an adequate protein digest. A number of enhanced accelerated digestion protocols have been developed in recent years. Nonetheless, a need still exists for new digestion strategies that meet the demands of proteomics for high-throughput and rapid detection and identification of proteins. We performed an evaluation of direct tryptic digestion of proteins on a MALDI target plate and the potential for integrating RP HPLC separation of protein with on-target tryptic digestion in order to achieve a rapid and effective identification of proteins in complex biological samples. To this end, we used a Tempo HPLC/MALDI target plate deposition hybrid instrument (ABI). The technique was evaluated using a number of soluble and membrane proteins and an MRC5 cell lysate. We demonstrated that direct deposition of proteins on a MALDI target plate after reverse-phase HPLC separation and subsequent tryptic digestion of the proteins on the target followed by MALDI TOF/TOF analysis provided substantial data (intact protein mass, peptide mass and peptide fragment mass) that allowed a rapid and unambiguous identification of proteins. The rapid protein separation and direct deposition of fractions on a MALDI target plate provided by the RP HPLC combined with off-line interfacing with the MALDI MS is a unique platform for rapid protein identification with improved sequence coverage. This simple and robust approach significantly reduces the sample handling and potential loss in large-scale proteomics experiments. This approach allows combination of peptide mass fingerprinting (PMF), MS/MS peptide fragment fingerprinting (PPF) and whole protein MS for both protein identification and structural analysis of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号