首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Protein synthesis by pure translation systems   总被引:1,自引:0,他引:1  
We have developed a partially recombinant, cell-free, protein-synthesis system reconstituted solely from those essential elements of the Escherichia coli translation system, termed protein synthesis using recombinant elements (PURE). It provides higher reaction controllability in comparison to crude cell-free protein-synthesis systems for translation studies and biotechnology applications. The PURE system stands out among translation methods in that it provides not only a simple and unique "reverse" purification method of separating the synthesized protein from reaction mixture, but also that the system can be tailor-made according to individual protein requirements. In this paper, two new approaches to obtaining active proteins are described: the use of molecular chaperones, and modification of the reaction conditions. Several possible applications of the PURE system are also discussed.  相似文献   

2.
3.
秦松  林瀚智  姜鹏 《生物学杂志》2010,27(1):64-67,49
随着可供利用的陆生资源的日益枯竭以及系统生物学与整合生物技术的兴起,藻类学研究正面临着许多前所未有的挑战与机遇。在312次香山科学会议——《藻类学的新前沿》上,与会专家围绕“系统生物学时代的藻类学研究”、“面向资源环境新需求的藻类生物技术”、“藻类学科和藻类产业的可持续发展”、“藻类与环境”等关键问题,进行了深入的探讨。  相似文献   

4.
A fundamental factors, pressure (P), is indispensable to develop and support applications in the field of bioscience and biotechnology. This short sentence describes an example how high pressure bioscience and biotechnology, which started from applied science, stimulates challenges of basic science and pure science in the biology-related fields including not only food science, medicine, and pharmacology but also biochemistry, molecular biology, cell biology, physical chemistry, and engineering.  相似文献   

5.
E Houben  de Gier JW    van Wijk KJ 《The Plant cell》1999,11(8):1553-1564
The mechanisms of targeting and insertion of chloroplast-encoded thylakoid membrane proteins are poorly understood. In this study, we have used a translation system isolated from chloroplasts to begin to investigate these mechanisms. The bacterial membrane protein leader peptidase (Lep) was used as a model protein because its targeting and insertion mechanisms are well understood for Escherichia coli and for the endoplasmic reticulum. Lep could thus provide insight into the functional homologies between the different membrane systems. Lep was efficiently expressed in the chloroplast translation system, and the protein could be inserted into thylakoid membranes with the same topology as in E. coli cytoplasmic membranes, following the positive-inside rule. Insertion of Lep into the thylakoid membrane was stimulated by the trans-thylakoid proton gradient and was strongly inhibited by azide, suggesting a requirement for SecA activity. Insertion most likely occurred in a cotranslational manner, because insertion could only be observed if thylakoid membranes were present during translation reactions but not when thylakoid membranes were added after translation reactions were terminated. To halt the elongation process at different stages, we translated truncated Lep mRNAs without a stop codon, resulting in the formation of stable ribosome nascent chain complexes. These complexes showed a strong, salt-resistant affinity for the thylakoid membrane, implying a functional interaction of the ribosome with the membrane and supporting a cotranslational insertion mechanism for Lep. Our study supports a functional homology for the insertion of Lep into the thylakoid membrane and the E. coli cytoplasmic membrane.  相似文献   

6.
细菌表面呈现技术研究进展   总被引:3,自引:1,他引:2  
自从首次描述外源蛋白在大肠杆菌表面呈现成功以来,细菌表面呈现技术得到了迅猛的发展,无论是革兰氏阴性菌还是革兰氏阳性菌都可用于异源蛋白的表面呈现,该技术被应用于微生物学、免疫学、分子生物学、疫苗学以及生物工程的多个领域的基础和应用研究。  相似文献   

7.
8.
Escherichia coli β-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli β-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain. Our data prove the activation of this microbial enzyme under oxidizing conditions and clearly show the occurrence of a disulfide bond in the β-galactosidase structure. Additionally, the formation of this disulfide bond is supported by the analysis of a homology model of the protein that indicates that two cysteines located in the vicinity of the catalytic center are sufficiently close for disulfide bond formation.  相似文献   

9.
10.
Drawing an analogy to past debates over biotechnology, some stakeholders fear that synthetic biology (SB) could raise public concerns. Accordingly, ‘lessons from the past’ should be applied to avoid controversies. However, biotechnology in the 1990s is not the only possible comparator. The potential to become contested has been attributed to a number of other novel technologies. Looking at nanotechnology for example, controversies have not materialised to the extent predicted. The article discusses factors relevant for controversies over technologies as well as differences to the situation when modern biotechnology began to proliferate. Certain properties attributed to SB in the discussion so far indeed suggest a potential for controversies of its own, but perceptions may follow those on other aspects of biotechnology subject to local contingencies. Finally, it is questioned whether ELSI research should see its task in applying lessons from the past to ease technology introduction. Today, rather than seeing themselves being embedded in a linear model of technology development, social scientists take an interest in developments ‘upstream’ where technologies take shape.  相似文献   

11.
Xuhua Xia 《Genetics》2015,199(2):573-579
Two alternative hypotheses attribute different benefits to codon-anticodon adaptation. The first assumes that protein production is rate limited by both initiation and elongation and that codon-anticodon adaptation would result in higher elongation efficiency and more efficient and accurate protein production, especially for highly expressed genes. The second claims that protein production is rate limited only by initiation efficiency but that improved codon adaptation and, consequently, increased elongation efficiency have the benefit of increasing ribosomal availability for global translation. To test these hypotheses, a recent study engineered a synthetic library of 154 genes, all encoding the same protein but differing in degrees of codon adaptation, to quantify the effect of differential codon adaptation on protein production in Escherichia coli. The surprising conclusion that “codon bias did not correlate with gene expression” and that “translation initiation, not elongation, is rate-limiting for gene expression” contradicts the conclusion reached by many other empirical studies. In this paper, I resolve the contradiction by reanalyzing the data from the 154 sequences. I demonstrate that translation elongation accounts for about 17% of total variation in protein production and that the previous conclusion is due to the use of a codon adaptation index (CAI) that does not account for the mutation bias in characterizing codon adaptation. The effect of translation elongation becomes undetectable only when translation initiation is unrealistically slow. A new index of translation elongation ITE is formulated to facilitate studies on the efficiency and evolution of the translation machinery.  相似文献   

12.
13.
14.
Previous mathematical modeling efforts have made significant contributions to the development of systems biology for predicting biological behavior quantitatively. However, dynamic metabolic model construction remains challenging due to uncertainties in mechanistic structures and parameters. In addition, parameter estimation and model validation often require designated experiments conducted only for purpose of modeling. Such difficulties have hampered the progress of modeling in biology and biotechnology. To circumvent these problems, ensemble approaches have been used to account for uncertainties in model structure and parameters. Specifically, this review focuses on approaches that utilize readily available fermentation data for parameter screening and model validation. Time course data for metabolite measurements, if available, can further calibrate the model. The basis for this approach is explained in non-mathematical terms accessible to experimentalists. Information gained from such an approach has been shown to be useful in designing Escherichia coli strains for metabolic engineering and synthetic biology.  相似文献   

15.
Laboratory models have suggested a link between metabolism and life span in vertebrates, and it is well known that the evolution of specific life histories can be driven by metabolic factors. However, little is known regarding how the adoption of specific life-history strategies can shape aging and life span in populations facing different energetic demands from either a theoretical or a mechanistic viewpoint but significant insight can be gained by using a comparative approach. Comparative biology plays several roles in our understanding of the virtually ubiquitous phenomenon of aging in animals. First, it provides a critical evaluation of broad hypotheses concerning the evolutionary forces underlying the modulation of aging rate. Second, it suggests mechanistic hypotheses about processes of aging. Third, it illuminates particularly informative species because of their exceptionally slow or rapid aging rates to be interrogated about potentially novel mechanisms of aging. Although comparative biology has played a significant role in research on aging for more than a century, the new comparative biology of aging is poised to dwarf those earlier contributions, because: (1) new cellular and molecular techniques for investigating novel species are in place and more are being continually generated, (2) molecular systematics has resolved the phylogenetic relationships among a wide range of species, which allow for the implementation of analytic tools specialized for comparative biology, and (3) in addition to facilitating the construction of accurate phylogenies, the dramatic acceleration in DNA-sequencing technology is providing us with new tools for a comparative genomic approach to understanding aging.  相似文献   

16.
17.
《Biotechnology journal》2009,4(9):1235-1240
Biotech news and views: Up-scaled vaccine production Biodiesel synthesis by biotechnological methods Biological particles in ice clouds Microorganisms producing nanoparticles Nanotechnology boost: MIT-INL Book highlight: Systems biology and biotechnology of Escherichia coli Most accessed articles in BTJ: Bacteria biosensors Tomography of malaria parasites New scaffold for artificial skin New on the market: Millipore's disposable bioreactor Olympus' all-in-one microscope family Engineering in Life Sciences: Increasing your yields Biosensing ethylene dibromide Modeling cellulose formation BioEssays highlights: SNPing the RNAi connection Stem, but not equal Folding metal  相似文献   

18.
Strong inference is a powerful and rapid tool that can be used to identify and explain patterns in molecular biology, cell biology, and physiology. It is effective where causes are single and separable and where discrimination between pairwise alternative hypotheses can be determined experimentally by a simple yes or no answer. But causes in ecological systems are multiple and overlapping and are not entirely separable. Frequently, competing hypotheses cannot be distinguished by a single unambiguous test, but only by a suite of tests of different kinds, that produce a body of evidence to support one line of argument and not others. We call this process “adaptive inference”. Instead of pitting each member of a pair of hypotheses against each other, adaptive inference relies on the exuberant invention of multiple, competing hypotheses, after which carefully structured comparative data are used to explore the logical consequences of each. Herein we present an example that demonstrates the attributes of adaptive inference that have developed out of a 30-year study of the resilience of ecosystems. Received 14 November 2000; accepted 15 June 2001.  相似文献   

19.
合成生物学是一门21世纪生物学的新兴学科,它着眼生物科学与工程科学的结合,把生物系统当作工程系统"从下往上"进行处理,由"单元"(unit)到"部件"(device)再到"系统"(system)来设计,修改和组装细胞构件及生物系统.合成生物学是分子和细胞生物学、进化系统学、生物化学、信息学、数学、计算机和工程等多学科交叉的产物.目前研究应用包括两个主要方面:一是通过对现有的、天然存在的生物系统进行重新设计和改造,修改已存在的生物系统,使该系统增添新的功能.二是通过设计和构建新的生物零件、组件和系统,创造自然界中尚不存在的人工生命系统.合成生物学作为一门建立在基因组方法之上的学科,主要强调对创造人工生命形态的计算生物学与实验生物学的协同整合.必须强调的是,用来构建生命系统新结构、产生新功能所使用的组件单元既可以是基因、核酸等生物组件,也可以是化学的、机械的和物理的元件.本文跟踪合成生物学研究及应用,对其在DNA水平编程、分子修饰、代谢途径、调控网络和工业生物技术等方面的进展进行综述.  相似文献   

20.
Newton did not discover that apples fall: the information was available prior to his gravitational hypothesis. Hypotheses can be tested not only by performing experiments but also by retrieving experiments from the literature (via PubMed, for example). Here I show how disconnected facts from known data, if properly connected, can generate novel predictions testable in turn by other published data. With examples from cell cycle, aging, cancer and other fields of biology and medicine, I discuss how new knowledge was and will be derived from old information. Millions of experiments have been already performed to test unrelated hypotheses and the results of those experiments are available to‘test’ your hypotheses too. But most data (99% by some estimates) remain unpublished, because they were negative, seemed of low priority, or did not fit the story. Yet for other investigators those data may be valuable. The well-known story of Franklin and Watson is a case in point. By making preliminary data widely available, ‘data-owners’ will benefit most, receiving the credit for otherwise unused results. If posted (pre-published) on searchable databases, these data may fuel thousands of projects without the need for repetitive experiments. Enormous ‘pre-published’ databases coupled with Google-like search engines can change the structure of scientific research, and shrinking funding will make this inevitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号