共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The evolution of the hedgehog gene family in chordates: insights from amphioxus hedgehog 总被引:9,自引:0,他引:9
Sebastian M. Shimeld 《Development genes and evolution》1999,209(1):40-47
The hedgehog family of intercellular signalling molecules have essential functions in patterning both Drosophila and vertebrate embryos. Drosophila has a single hedgehog gene, while vertebrates have evolved at least three types of hedgehog genes (the Sonic, Desert and
Indian types) by duplication and divergence of a single ancestral gene. Vertebrate Sonic-type genes typically show conserved
expression in the notochord and floor plate, while Desert- and Indian-type genes have different patterns of expression in
vertebrates from different classes. To determine the ancestral role of hedgehog in vertebrates, I have characterised the hedgehog
gene family in amphioxus. Amphioxus is the closest living relative of the vertebrates and develops a similar body plan, including
a dorsal neural tube and notochord. A single amphioxus hedgehog gene, AmphiHh, was identified and is probably the only hedgehog family member in amphioxus, showing the duplication of hedgehog genes to
be specific to the vertebrate lineage. AmphiHh expression was detected in the notochord and ventral neural tube, tissues that express Sonic-type genes in vertebrates. This
shows that amphioxus probably patterns its ventral neural tube using a molecular pathway conserved with vertebrates. AmphiHh was also expressed on the left side of the pharyngeal endoderm, reminiscent of the left-sided expression of Sonic hedgehog in chick embryos which forms part of a pathway controlling left/right asymmetric development. These data show that notochord,
floor plate and possibly left/right asymmetric expression are ancestral sites of hedgehog expression in vertebrates and amphioxus.
In vertebrates, all these features have been retained by Sonic-type genes. This may have freed Desert-type and Indian-type
hedgehog genes from selective constraint, allowing them to diverge and take on new roles in different vertebrate taxa.
Received: 20 July 1998 / Accepted: 23 September 1998 相似文献
3.
4.
Bettina Ebner Georgia Panopoulou Serge N Vinogradov Laurent Kiger Michael C Marden Thorsten Burmester Thomas Hankeln 《BMC evolutionary biology》2010,10(1):370
Background
The lancelet amphioxus (Cephalochordata) is a close relative of vertebrates and thus may enhance our understanding of vertebrate gene and genome evolution. In this context, the globins are one of the best studied models for gene family evolution. Previous biochemical studies have demonstrated the presence of an intracellular globin in notochord tissue and myotome of amphioxus, but the corresponding gene has not yet been identified. Genomic resources of Branchiostoma floridae now facilitate the identification, experimental confirmation and molecular evolutionary analysis of its globin gene repertoire. 相似文献5.
Minguillón C Jiménez-Delgado S Panopoulou G Garcia-Fernàndez J 《Development (Cambridge, England)》2003,130(24):5903-5914
Vertebrate Hairy genes are highly pleiotropic and have been implicated in numerous functions, such as somitogenesis, neurogenesis and endocrine tissue development. In order to gain insight into the timing of acquisition of these roles by the Hairy subfamily, we have cloned and studied the expression pattern of the Hairy gene(s) in amphioxus. The cephalochordate amphioxus is widely believed to be the living invertebrate more closely related to vertebrates, the genome of which has not undergone the massive gene duplications that took place early during vertebrate evolution. Surprisingly, we have isolated eight Hairy genes from the 'pre-duplicative' amphioxus genome. In situ hybridisation on amphioxus embryos showed that Hairy genes had experienced a process of subfunctionalisation that is predicted in the DDC model (for duplication-degeneration-complementation). Only the summation of four out of the eight Amphi-Hairy genes expression resembles the expression pattern of vertebrate Hairy genes, i.e. in the central nervous system, presomitic mesoderm, somites, notochord and gut. In addition, Amphi-Hairy genes expression suggest that amphioxus early somites are molecularly prefigured in an anteroposterior sequence in the dorsolateral wall of the archenteron, and the presence of a midbrain/hindbrain boundary. The expansion of the amphioxus Hairy subfamily request for caution when deducing the evolutionary history of a gene family in chordates based in the singularity of the amphioxus genome. Amphioxus may resemble the ancestor of the vertebrates, but it is not the ancestor, only its closest living relative, a privileged position that should not assume the freezing of its genome. 相似文献
6.
Gene and domain duplication in the chordate Otx gene family: insights from amphioxus Otx 总被引:5,自引:1,他引:5
We report the genomic organization and deduced protein sequence of a
cephalochordate member of the Otx homeobox gene family (AmphiOtx) and show
its probable single-copy state in the genome. We also present molecular
phylogenetic analysis indicating that there was single ancestral Otx gene
in the first chordates which was duplicated in the vertebrate lineage after
it had split from the lineage leading to the cephalochordates. Duplication
of a C-terminal protein domain has occurred specifically in the vertebrate
lineage, strengthening the case for a single Otx gene in an ancestral
chordate whose gene structure has been retained in an extant
cephalochordate. Comparative analysis of protein sequences and published
gene expression patterns suggest that the ancestral chordate Otx gene had
roles in patterning the anterior mesendoderm and central nervous system.
These roles were elaborated following Otx gene duplication in vertebrates,
accompanied by regulatory and structural divergence, particularly of Otx1
descendant genes.
相似文献
7.
The FoxQ1 genes form a distinct group within the Fox (also known as forkhead) gene family. We have isolated a gene from the amphioxus Branchiostoma floridae that encodes a forkhead domain with high identity to FoxQ1 genes in other chordates. Molecular phylogenetic analysis places AmphiFoxQ1 in a robust grouping with vertebrate FoxQ1 genes and with Ciona intestinalis Ci-FoxQ1. This group is separate from that containing AmphiFoxQ2, which instead groups with other invertebrate Fox genes. The expression of AmphiFoxQ1 was analysed by whole mount in situ hybridisation. The results show that AmphiFoxQ1 expression is confined to the developing endoderm, and specifically marks the endostyle and associated peripharyngeal bands of amphioxus larvae. Ci-FoxQ1 is also expressed in the endostyle, highlighting this as a conserved site of FoxQ1 gene expression in basal chordates. 相似文献
8.
Cranial placodes are regions of thickened ectoderm that give rise to sense organs and ganglia in the vertebrate head. Homologous structures are proposed to exist in urochordates, but have not been found in cephalochordates, suggesting the first chordates lacked placodes. SoxB genes are expressed in discrete subsets of vertebrate placodes. To investigate how placodes arose and diversified in the vertebrate lineage we isolated the complete set of SoxB genes from amphioxus and analyzed their expression in embryos and larvae. We find that while amphioxus possesses a single SoxB2 gene, it has three SoxB1 paralogs. Like vertebrate SoxB1 genes, one of these paralogs is expressed in non-neural ectoderm destined to give rise to sensory cells. When considered in the context of other amphioxus placode marker orthologs, amphioxus SoxB1 expression suggests a diversity of sensory cell types utilizing distinct placode-type gene programs was present in the first chordates. Our data supports a model for placode evolution and diversification whereby the full complement of vertebrate placodes evolved by serial recruitment of distinct sensory cell specification programs to anterior pre-placodal ectoderm. 相似文献
9.
The tuatara (Sphenodon punctatus) is of "extraordinary biological interest" as the most distinctive surviving reptilian lineage (Rhyncocephalia) in the world. To provide a genomic resource for an understanding of genome evolution in reptiles, and as part of a larger project to produce genomic resources for various reptiles (evogen.jgi.doe.gov/second_levels/BACs/our_libraries.html), a large-insert bacterial artificial chromosome (BAC) library from a male tuatara was constructed. The library consists of 215 424 individual clones whose average insert size was empirically determined to be 145 kb, yielding a genomic coverage of approximately 6.3x. A BAC-end sequencing analysis of 121 420 bp of sequence revealed a genomic GC content of 46.8%, among the highest observed thus far for vertebrates, and identified several short interspersed repetitive elements (mammalian interspersed repeat-type repeats) and long interspersed repetitive elements, including chicken repeat 1 element. Finally, as a quality control measure the arrayed library was screened with probes corresponding to 2 conserved noncoding regions of the candidate sex-determining gene DMRT1 and the DM domain of the related DMRT2 gene. A deep coverage contig spanning nearly 300 kb was generated, supporting the deep coverage and utility of the library for exploring tuatara genomics. 相似文献
10.
Benito-Gutiérrez E 《International journal of biological sciences》2006,2(3):149-160
The elaboration of extremely complex nervous systems is a major success of evolution. However, at the dawn of the post-genomic era, few data have helped yet to unravel how a nervous system develops and evolves to complexity. On the evolutionary road to vertebrates, amphioxus occupies a key position to tackle this exciting issue. Its "simple" nervous system basically consists of a dorsal nerve cord and a diffuse net of peripheral neurons, which contrasts greatly with the complexity of vertebrate nervous systems. Notwithstanding, increasing data on gene expression has faced up this simplicity by revealing a mounting level of cryptic complexity, with unexpected levels of neuronal diversity, organisation and regionalisation of the central and peripheral nervous systems. Furthermore, recent gene expression data also point to the high neurogenic potential of the epidermis of amphioxus, suggestive of a skin-brain track for the evolution of the vertebrate nervous system. Here I attempt to catalogue and synthesise current gene expression data in the amphioxus nervous system. From this global point of view, I suggest scenarios for the evolutionary origin of complex features in the vertebrate nervous system, with special emphasis on the evolutionary origin of placodes and neural crest, and postulate a pre-patterned migratory pathway of cells, which, in the epidermis, may represent an intermediate state towards the deployment of one of the most striking innovative features of vertebrates: the neural crest and its derivatives. 相似文献
11.
The lipase gene family 总被引:1,自引:0,他引:1
Development of the lipase gene family spans the change in science that witnessed the birth of contemporary techniques of molecular biology. Amino acid sequencing of enzymes gave way to cDNA cloning and gene organization, augmented by in vitro expression systems and crystallization. This review traces the origins and highlights the functional significance of the lipase gene family, overlaid on the background of this technical revolution. The gene family initially consisted of three mammalian lipases [pancreatic lipase (PL), lipoprotein lipase, and hepatic lipase] based on amino acid sequence similarity and gene organization. Family size increased when several proteins were subsequently added based on amino acid homology, including PL-related proteins 1 and 2, phosphatidylserine phospholipase A1, and endothelial lipase. The physiological function of each of the members is discussed as well as the region responsible for lipase properties such as enzymatic activity, substrate binding, heparin binding, and cofactor interaction. Crystallization of several lipase gene family members established that the family belongs to a superfamily of enzymes, which includes esterases and thioesterases. This superfamily is related by tertiary structure, rather than amino acid sequence, and represents one of the most populous families found in nature. 相似文献
12.
Despite the central role of gamma-tubulin in the organization of the microtubule cytoskeleton, the gamma-tubulin gene family in humans has not been characterized. We now report the identification of a second expressed human gamma-tubulin gene (TUBG2) and a gamma-tubulin pseudogene (TUBG1P) in addition to the previously identified gamma-tubulin gene (TUBG1). Evidence from Southern hybridizations suggests that there are probably no additional gamma-tubulin sequences in the human genome. TUBG1 and TUBG2 are within 20 kb of each other in region q21 of chromosome 17, and TUBG1P is on chromosome 7. The proteins encoded by TUBG1 and TUBG2 share 97.3% amino acid identity, and the two genes are coexpressed in a variety of tissues. Previous studies of gamma-tubulin in human tissues and cell lines have been based on the tacit assumption that a single gamma-tubulin (the gamma-tubulin encoded by TUBG1) was present. While this assumption is not correct, the similarity of the products of TUBG1 and TUBG2 suggests that results of previous immunolocalization and immunoprecipitation studies in human cells and tissues are likely to be valid. In addition, any pharmacological agents that target one human gamma-tubulin are likely to target both. 相似文献
13.
The RecQ gene family in plants 总被引:3,自引:0,他引:3
RecQ helicases are conserved throughout all kingdoms of life regarding their overall structure and function. They are 3'-5' DNA helicases resolving different recombinogenic DNA structures. The RecQ helicases are key factors in a number of DNA repair and recombination pathways involved in the maintenance of genome integrity. In eukaryotes the number of RecQ genes and the structure of RecQ proteins vary strongly between organisms. Therefore, they have been named RecQ-like genes. Knockouts of several RecQ-like genes cause severe diseases in animals or harmful cellular phenotypes in yeast. Until now the largest number of RecQ-like genes per organism has been found in plants. Arabidopsis and rice possess seven different RecQ-like genes each. In the almost completely sequenced genome of the moss Physcomitrella patens at least five RecQ-like genes are present. One of the major present and future research aims is to define putative plant-specific functions and to assign their roles in DNA repair and recombination pathways in relation to RecQ genes from other eukaryotes. Regarding their intron positions, the structures of six RecQ-like genes of dicots and monocots are virtually identical indicating a conservation over a time scale of 150 million years. In contrast to other eukaryotes one gene (RecQsim) exists exclusively in plants. It possesses an interrupted helicase domain but nevertheless seems to have maintained the RecQ function. Owing to a recent gene duplication besides the AtRecQl4A gene an additional RecQ-like gene (AtRecQl4B) exists in the Brassicaceae only. Genetic studies indicate that a AtRecQl4A knockout results in sensitivity to mutagens as well as an hyper-recombination phenotype. Since AtRecQl4B was still present, both genes must have non-redundant roles. Analysis of plant RecQ-like genes will not only increase the knowledge on DNA repair and recombination, but also on the evolution and radiation of protein families. 相似文献
14.
The SELF-PRUNING gene family in tomato 总被引:6,自引:0,他引:6
The SELF PRUNING (SP) gene controls the regularity of the vegetative-reproductive switch along the compound shoot of tomato and thus conditions the 'determinate' (sp/sp) and 'indeterminate' (SP_) growth habits of the plant. SP is a developmental regulator which is homologous to CENTRORADIALIS (CEN) from Antirrhinum and TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) from Arabidopsis. Here we report that SP is a member of a gene family in tomato composed of at least six genes, none of which is represented in the tomato EST collection. Sequence analysis of the SP gene family revealed that its members share homology along their entire coding regions both among themselves and with the six members of the Arabidopsis family. Furthermore, members of the gene family in the two species display a common genomic organization (intron-exon pattern). In tomato, phylogenetically close homologues diverged considerably with respect to their organ expression patterns while SP2I and its closest homologue from Arabidopsis (MFT) exhibited constitutive expression. This research focusing on a plant of sympodial growth habit sets the stage for a functional analysis of this weakly expressed gene family which plays a key role in determining plant architecture. 相似文献
15.
Unannotated mammalian genome databases (dog, cow, opossum) were searched for candidate connexin genes, using sequences from annotated genomes (man, mouse). All 18 'multi-species' connexin genes, i.e., orthologs of connexin26 , 29/31.3 (duplicated in opossum), 30, 30.2/31.9, 30.3, 31, 31.1, 32, 36, 37, 39/40.1, 40, 43, 45, 44/46, 47, 50, and 57/62 , were found in dog, cow and opossum. Connexin25 and 58 have been considered specific for man, but evident orthologs of connexin25 were found in dog, cow and opossum, and orthologs of connexin58 were found in dog and cow. Moreover, a connexin43 -like sequence (approx. 80% identical to connexin43 ) was found in man, chimpanzee, dog and cow. In the three former species, the sequences were located on the X chromosome. In man, chimpanzee and cow, there were stop codons in all reading frames; these sequences are therefore judged as pseudogenes, called here Cx43pX . In the dog, the sequence contained an open reading frame for a protein of 35.7 kDa (connexin35.7). We suggest that these sequences are orthologs of connexin33 , previously considered as a rodent-specific connexin gene. Thus, connexin25 , 33 and 58 are not species-specific genes. However, the opossum may possess a candidate, connexin39.2 , without obvious orthologs in other mammals. Furthermore, pseudogenes of primate connexin31.3 and opossum connexin35 (one of the two orthologs of primate connexin31.3) were detected. These results suggest that the structure of the mammalian connexin gene family should be revised, especially with regard to the so-called 'species-specific' connexins . 相似文献
16.
An amphioxus cDNA, AmphiGM2AP, encoding GM2 activator protein was isolated from the gut cDNA library of Branchiostoma belcheri. It is 907 bp long, and its longest open reading frame codes for a precursor protein consisting of 242 amino acid residues with a signal peptide of 14 amino acids. The deduced amino acid sequence includes a conserved domain typical of GM2APs between residues 53 and 224, a single N-linked glycosylation site at position 65 and 8 conserved cysteines. Phylogenetic analysis showed that amphiGM2AP forms a club together with invertebrate GM2APs, indicating that AmphiGM2AP is evolutionarily closely related to invertebrate GM2APs rather than vertebrate ones. Both Northern blotting and in situ hybridization histochemistry analyses revealed a tissue-specific expression pattern of AmphiGM2AP in adult amphioxus with the strongest expression in the digestive system, which is in contrast to the widespread expression pattern of human, mouse and sheep GM2AP genes. It is suggested that AmphiGM2AP is possibly involved in the take-in of digested food components like lipid molecules. 相似文献
17.
18.
19.
Genomic and cDNA clones of an Msx class homeobox gene were isolated from amphioxus (Branchiostoma floridae). The gene, AmphiMsx, is expressed in the neural plate from late gastrulation; in later embryos it is expressed in dorsal cells of the neural
tube, excluding anterior and posterior regions, in an irregular reiterated pattern. There is transient expression in dorsal
cells within somites, reminiscent of migrating neural crest cells of vertebrates. In larvae, mRNA is detected in two patches
of anterior ectoderm proposed to be placodes. Evolutionary analyses show there is little phylogenetic information in Msx protein
sequences; however, it is likely that duplication of Msx genes occurred in the vertebrate lineage.
Received: 12 October 1998 / Accepted: 26 December 1998 相似文献
20.